
CNC Milling
Toolpath
Generation
Using Genetic Algorithms

www.EngineeringBooksPdf.com

CNC Milling Toolpath Generation

Using Genetic Algorithms
Wesley P. Essink

A thesis submitted for the degree of Doctor of Philosophy

University of Bath

Department of Mechanical Engineering

September 2016

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy

of the report has been supplied on the condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the report

and no information derived from it may be published without the prior written consent of

the author.

This thesis may be made available for consultation within the University Library and may

be photocopied or lent to other libraries for the purposes of consultation with effect from

14th September 2016

Signed on behalf of the Faculty/School of .

Signature of Author .

Wesley P. Essink

www.EngineeringBooksPdf.com

Abstract

The prevalence of digital manufacturing in creating increasingly complex products with small

batch sizes, requires effective methods for production process planning. Toolpath generation

is one of the challenges for manufacturing technologies that function based on the controlled

movement of an end effector against a workpiece. The current approaches for determining

suitable tool paths are highly dependent on machine structure, manufacturing technology

and product geometry. This dependence can be very expensive in a volatile production en-

vironment where the products and the resources change quickly. In this research, a novel

approach for the flexible generation of toolpaths using a mathematical formulation of the

desired objective is proposed. The approach, based on optimisation techniques, is developed

by discretising the product space into a number of grid points and determining the optimal

sequence of the tool tip visiting these points. To demonstrate the effectiveness of the ap-

proach, the context of milling machining has been chosen and a genetic algorithm has been

developed to solve the optimisation problem. The results show that with meta heuristic

methods, flexible tool paths can indeed be generated for industrially relevant parts using

existing computational power. Future computing platforms, including quantum computers,

could extend the applicability of the proposed approach to much more complex domains for

instantaneous optimisation of the detailed manufacturing process plan.

i

www.EngineeringBooksPdf.com

Acknowledgements

This research would not have been possible without the continued support from family, friends

and colleagues. I would like to take this opportunity to thank all of the people involved in

supporting me throughout my postgraduate studies.

Firstly, I would like to thank my supervisor, Dr. Aydin Nassehi for not only the op-

portunity to perform this research but also for his unending moral, technical and academic

support throughout my studies. I will be forever grateful for your continued friendship and

patience through even the most difficult moments over the last years.

Secondly, I would like to extend my gratitude to my second supervisor, Professor Stephen

T. Newman. His support has been invaluable throughout my postgraduate studies. His

sustained encouragement and enthusiasm helped push me to the end of my thesis.

I would also like to thank all of the past and present members of the AMPS research group

at the University of Bath who’s friendships created a great environment to inspire creative

ideas and provide helpful feedback for my research. A special mention to Dr. Joseph Flynn,

I will be forever indebted to your friendship and moral support.

Finally I would like to express my utmost gratitude and love to my parents, Gerard and

Nicoline Essink. Without your love, support and encouragement none of my studies would

have been possible. Thank you.

ii

www.EngineeringBooksPdf.com

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vii

List of Tables ix

Glossary x

1 Introduction 1

1.1 Background . 1

1.2 Research Aim . 4

1.3 Research Objectives . 5

1.4 Research Boundaries . 5

1.4.1 CNC Machining Toolpaths . 5

1.4.2 Part Geometries and Features . 7

1.4.3 Optimisation Algorithms . 7

1.5 Scope of the Research . 7

1.5.1 Review of State-of-the-Art in Toolpath Generation and Optimisation
for Milling Technologies . 7

1.5.2 Review of Current Methods for Solving the Travelling Salesman Problem 8

1.5.3 Specification of a Novel Framework for Realisation of Toolpath Gener-
ation Using a Genetic Algorithm . 8

1.5.4 Modelling Toolpath Generation as a Travelling Salesman Problem . . 8

1.5.5 Developing a Computational Platform to Solve the Travelling Salesman
Problem . 8

1.5.6 Evaluation of the Toolpath Generation Computational Platform . . . 9

2 Toolpath Generation for CNC Milling 10

2.1 Model Representation . 10

2.2 Toolpath Generation for Milling Machines . 12

2.2.1 Toolpath Generation for Three-Axis Machining 13

2.2.2 Toolpath Generation for Five-Axis Machining 19

iii

www.EngineeringBooksPdf.com

2.3 Critique of the Literature . 24

3 Theoretical Framework 26

3.1 Introduction . 26

3.2 Milestones . 26

3.3 Modelling Toolpath Generation as a Travelling Salesman Problem 27

3.3.1 ISO14649 Interpreter . 27

3.3.2 Data Storage . 28

3.3.3 Creating the Model . 28

3.3.4 Data Point Reduction/Optimisation 31

3.4 Creating a Computational Platform for Solving the Travelling Salesman Problem 34

3.5 Toolpath Planning Modelled as a TSP . 34

3.6 Solving the Traveling Salesman Problem . 36

3.6.1 Heuristics . 37

3.6.2 Meta-heuristics . 41

3.6.3 Multi-Objective Meta-Heuristics . 56

3.7 Challenges in adopting TSP for toolpath generation 58

3.8 Developing the Genetic Algorithm . 59

3.9 Optimising the Genetic Algorithm . 60

3.10 Validation . 62

4 Creating a Computational Platform for Generating Optimised Toolpaths 64

4.1 Theoretical Model of Toolpath Generation as a
Travelling Salesman Problem . 64

4.2 Creating a model from STEP-NC Data . 67

4.2.1 Interpreting the STEP-NC Code . 68

4.2.2 Extracting Boundary Information . 70

4.2.3 Offsetting the Boundary . 73

4.2.4 Generating a Z-Map . 75

4.2.5 Generating a Z-Map for a 3D Feature 79

4.3 Developing the Genetic Algorithm . 81

4.3.1 Overall Structure of the Genetic Algorithm 83

4.3.2 Initial Conditions of the Genetic Algorithm 84

4.3.3 Genetic Algorithm Operators . 86

4.4 Optimisation of the Toolpath . 98

4.4.1 Path Length . 99

4.4.2 Path Straightness . 100

4.4.3 Tool Engagement . 107

5 Design of Test Cases for Validation 113

5.1 Introduction . 113

5.2 Developing the Test Parts . 113

5.2.1 Test Part Inspired by Aerospace Component 113

5.2.2 Test Part with Sloped Feature Boundary 115

5.3 Genetic Algorithm Performance . 116

5.3.1 Comparison to Established Methods 116

iv

www.EngineeringBooksPdf.com

5.3.2 Validating Genetic Algorithm Objective Functions 118

5.4 Summary . 121

6 Machining Results with Comparison to Established Algorithms 122

6.1 Introduction . 122

6.2 Genetic Algorithm Performance . 123

6.2.1 Effects of Number of Grid Points . 123

6.2.2 Variation in Generated Solutions . 124

6.2.3 Scallop Height in Non-Prismatic Features 127

6.3 Validation of Objective Function Models . 128

6.3.1 Path Length . 128

6.3.2 Path Straightness . 132

6.3.3 Tool Engagement . 134

6.3.4 Multi-Objective . 134

6.4 Comparison to Currently Used Methods . 138

6.4.1 Toolpath for Test Parts Generated by the Developed Genetic Algorithm138

6.4.2 Toolpath for Test Parts Generated by CAM Software 138

6.4.3 Overall Comparison of GA Generated VS CAM Generated Toolpaths 140

6.4.4 Comparison Against Car’s Genetic Algorithm 141

6.5 Summary . 141

7 Discussion 143

7.1 Introduction . 143

7.2 State-of-the-art in Milling Toolpath Generation 143

7.3 State-of-the-art in Methods for Solving the Travelling Salesman Problem . . . 144

7.4 A Novel Framework for Modelling Toolpath Generation as a Travelling Sales-
man Problem . 144

7.4.1 Generating a TSP for a Given Geometry 145

7.4.2 Optimising the Generated TSP . 145

7.4.3 Defining Objective Functions for Optimisation 145

7.4.4 A Computational Platform Prototype of the Novel Framework 146

7.5 Evaluation of the Novel Framework and Computational Platform Using Test
Cases . 146

7.6 Limitations of the Computational Platform 147

8 Conclusion and Future Work 149

8.1 Introduction . 149

8.2 Conclusions . 149

8.3 Contribution to Knowledge . 151

8.4 Future Work . 151

8.4.1 Including Additional Toolpath Characteristics 151

8.4.2 5-Axis Machining . 152

8.4.3 Additive Manufacturing Toolpaths . 153

8.4.4 Quantum Computer Toolpath Generation 154

References 155

v

www.EngineeringBooksPdf.com

9 Appendix 168
9.1 STEP-NC Programme of Test Parts . 168

9.1.1 Fishhead Test Part . 168
9.1.2 Sloped Boundary Test Part . 177

vi

www.EngineeringBooksPdf.com

List of Figures

1-1 Structure of Thesis Chapters. 3
1-2 The research boundaries of this research. 6

2-1 The construction of a part represented with CSG. 11
2-2 Solid model representation using voxel layers. 11
2-3 An example of a Voronoi diagram for a simple feature boundary. 13
2-4 Offset contours generated from Voronoi diagram. 13
2-5 Scaled contour lines generated for an example feature using bisector lines . . 14

3-1 An example part 21 code from ISO14649-11 Annex F. 28
3-2 A simple example part. 30
3-3 An example of a 2D Grid for the part in Figure3-2. 30
3-4 Visualising the grid system for an example part with boundary points. 32
3-5 First step of the point reduction process. 33
3-6 Second step of the point reduction process. 33
3-7 An example of a 2-opt exchange with the resulting path. 39
3-8 An example of a 3-opt exchange with the two possible exchanges. 39
3-9 An example of a 2.5-opt exchange. 40
3-10 A flowchart showing the structure of a typical genetic algorithm 43

4-1 The construction of a composite curve. 71
4-2 The error in approximating a composite curve. 72
4-3 The reduction of error in approximating a composite curve. 72
4-4 An illegal position of the tool within the original boundary. 74
4-5 Offsetting the original boundary to remove illegal positions. 74
4-6 An example boundary containing a reflex vertex with all of its edges offset . . 76
4-7 An example of the ray cast method with a point inside and a point outside the

boundary. 77
4-8 Grid point selection flowchart. 78
4-9 An example sloped pocket with scallop error between layers. 79
4-10 A reduction in the scallop error between layers by using a smaller cut depth. 80
4-11 Generating a machining toolpath for an example feature 82
4-12 An example ternary grid for a simple part. 85
4-13 Initialisation process of an individual in the population 87
4-14 Effect of Population Size on Fitness for Up to 5 Million Generations. 88
4-15 Box plot showing effectiveness of various selection operators 90
4-16 Box plot showing effectiveness of various crossover operators 93

vii

www.EngineeringBooksPdf.com

4-17 Example mutation using the nearest neighbours operator. 97
4-18 Box plot showing effectiveness of various mutation operators 97
4-19 Modular fitness function with edge change tracking. 100
4-20 An example generated path with length optimisation. 101
4-21 An example of how the direction of machining can change around a feature. . 102
4-22 Turn based straightness optimisation part of the fitness function. 103
4-23 An example generated path with turn based straightness optimisation. 103
4-24 Angle of each subpath. 104
4-25 Angle difference between two subpaths. 104
4-26 An example toolpath generated using the angular objective function. 106
4-27 Area of tool engaged with the material. 107
4-28 An example of a discretised circle using Bresenham’s circle algorithm. 109
4-29 An example of a discretised path using Bresenham’s line algorithm. 110
4-30 An example of a generated toolpath using the tool engagement objective function.111
4-31 The distribution of tool engagement over the toolpath shown in Figure 4-30. . 112

5-1 The original fishhead part. 114
5-2 The adapted fishhead test part. 114
5-3 The dimensions of the adapted fishhead test part. 115
5-4 The test part containing a feature with a sloped boundary. 116
5-5 The QA194 TSP problem with the optimal tour. 118
5-6 The XIT1083 TSP problem with the optimal tour. 118
5-7 The FI10639 TSP problem with the optimal tour. 119

6-1 Fitness over all generations for point sets up to 10000 points. 123
6-2 Fitness of generated paths for various point set sizes after 10 million generations.124
6-3 Time taken to iterate 1000 generations for increasing number of points. . . . 125
6-4 The distribution of quality for the generated solutions. 126
6-5 The spread of fitness over 3 million generations. 126
6-6 Toolpath generated by GA for 3D pocket. 127
6-7 3D Model of machined pocket with sloped boundary. 128
6-8 Comparison of optimal vs generated solutions to the QA194 TSP. 129
6-9 Comparison of optimal vs generated solutions to the XIT1083 TSP. 130
6-10 Comparison of optimal vs generated solutions to the FI10639 TSP. 131
6-11 Optimal bidirectional toolpath for 10x10 grid. 132
6-12 Optimal spiral toolpath for 10x10 grid. 133
6-13 Generated bidirectional toolpath for 10x10 grid. 133
6-14 Generated spiral toolpath for 10x10 grid. 133
6-15 Tool engagement across toolpaths at various levels of tool engagement. 135
6-16 The generated toolpath using the multi-objective function. 136
6-17 Comparison of single vs multi-objective tool engagement over the toolpath. . 137
6-18 Bidirectional toolpath for the fishhead test part generated with the GA. . . . 138
6-19 Spiral toolpath for the fishhead test part generated with the GA. 139
6-20 Bidirectional toolpath for the fishhead test part generated with FeatureCam. 139
6-21 Spiral toolpath for the fishhead test part generated with FeatureCam. 140

8-1 Comparison of single component and multi-component genes. 152

viii

www.EngineeringBooksPdf.com

List of Tables

3.1 Genetic edges for example parent chromosomes 49

6.1 Comparison of scallop height between specified and actual values. 127
6.2 Comparison of toolpaths generated by the genetic algorithm vs. optimal paths

for three TSPs. 130
6.3 Comparison of generated vs optimal toolpaths for bidirectional and spiral

strategies. 132
6.4 Comparison of toolpath metrics between the multi-objective and single-objective

fitness functions. 136
6.5 Comparison of toolpath metrics between CAM and GA generated toolpaths

for the fishhead test part. 140
6.6 Comparing the performance of the developed GA to Car’s. 141

ix

www.EngineeringBooksPdf.com

Glossary

2D 2 Dimensional
3D 3 Dimensional
B-rep Boundary-representation
ACO Ant Colony Optimisation
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CMM Coordinate Measurement Machine
CNC Computer Numerical Control
CSG Constructive Solid Geometry
C-space Configuration space
EA Evolutionary Algorithm
ERX Edge Recombination Crossover
GA Genetic Algorithm
IDEF Integrated Def inition
ISO International Organisation for Standardisation
LK Lin-Kernighan
LKH Lin-Kernighan-Helsgaun
NC Numerical Ccontrol
OX Order Crossover
PMX Partially Mapped Crossover
STEP Standard for the Exchange of Product model data
TSP Travelling Salesman Problem

x

www.EngineeringBooksPdf.com

Chapter 1

Introduction

1.1 Background

As the manufacturing industry is becoming increasingly automated with the industry’s move

from craft production to mass customisation, several paradigm shifts have become necessary[1]

from the use of machines to replace hand-made parts, through the use of production lines

to increase the volume of products being made, culminating in the increased use of IT in

computer integrated manufacturing.

Today, the main challenge is to adapt to the fast pace of technology development and

making sure manufacturing technology is sufficiently flexible to accommodate these changes.

One of the main issues that need to be tackled is the time taken between design and

manufacture[2]. Machining is amongst the core technologies used in the manufacturing pro-

cess of various products, either to make the product directly or to manufacture enablers such

as moulds. Computer Numerically Controlled (CNC) metal cutting machines are utilised

extensively in the manufacturing industry. For these machines, with every design change, a

new CNC machining program needs to be developed to manufacture the part. This can be

very time consuming to do manually[3, 4].

CNC machines are generally programmed by specifying the controlled motion of the

various axes of movement that connect the mechanical elements of the machine tool to result

in the controlled movement of a cutting tool against a workpiece to cut away the excess

material to produce the desired shape of the end product. These axes movements can also

1

www.EngineeringBooksPdf.com

be seen as relative movement of the cutting tool against a stationary workpiece and many

researchers consider such ”toolpaths” as the main frame of reference in programming CNC

machine tools.

The current method of generating toolpaths requires significant input from an expert user,

the quality of the generated paths is highly sensitive to the geometry of the part and distinct

algorithms are required to obtain paths that optimise certain characteristics of machining

processes.

This research aims to specify and realise a novel methodology of generating toolpaths in a

flexible manner so that various optimisations are possible independent of the part geometry,

without requiring a database of different algorithms.

Evolutionary optimisation in general, and genetic algorithms in particular, underpins the

theoretical framework of the proposed methodology.

Genetic algorithms can easily be adapted for optimisation of additional objectives which

makes them an excellent platform for toolpath generation when various characteristics are

given importance in the machining process.

The following section will cover the framework of the research which is followed by a

review of the current methods for generating toolpaths in Chapter 2. Chapter 3 will provide

a theoretical framework for the models and concepts used to implement a prototype solution

to the research problem. The development of this prototype is discussed in Chapter 4. This is

followed by a set of test cases designed to validate the developed prototype in Chapter 5 with

the results of these tests cases provided in Chapter 6. A discussion of the research performed

is given in Chapter 7. Finally the conclusions of the research along with the author’s vision

of potential future work are provided in Chapter 8. An outline of the thesis structure can be

seen in Figure 1-1.

2

www.EngineeringBooksPdf.com

Figure 1-1: Structure of Thesis Chapters.

3

www.EngineeringBooksPdf.com

1.2 Research Aim

This research was conceived due to an industrial need to increase interoperability in the man-

ufacturing chain from design to finished part. It was found that the best way to increase

interoperability was to increase the manufacturing information passing between the various

stages in the manufacturing chain[5]. Currently the information chain is very much unidirec-

tional with some information being lost along the chain. An example of this can be identified

by considering a part designed in CAD which contains all of the geometry and tolerances

for the part. At the CNC machining stage, all the information that is left is the G code

which describes the axial movements of the tool and the machining parameters for the CNC

machine.

To overcome this loss of information, a new machine tool control language was developed

called STEP-NC[6]. This new control language would contain all of the manufacturing in-

formation required at any stage of the manufacturing process (part geometry/tolerances,

manufacturing operations etc.). From the literature in Chapter 2 it can be seen that there

is still a lack of available software and tools to properly utilise this new control language.

STEP-NC has still not been adopted by industry which means that current CNC machining

is still done using G Code.

Therefore the overall aim of this research is to develop a flexible computational platform

that can generate efficient CNC milling machining toolpaths for parts described by the STEP-

NC data structure. This will allow the STEP-NC representation of a part to be used on CNC

machines using the G Code programming language. The computational platform developed

in this research will replace the CAM stage in the manufacturing chain thus it will have to

be flexible enough to handle various part geometries and features as well as milling tools and

machining strategies.

4

www.EngineeringBooksPdf.com

1.3 Research Objectives

The following set of objectives were defined to create a structure for the research and to

ensure the aim was achieved:

• Identify and convert part geometry from STEP-NC to programming environment.

• Adapt travelling salesman problem model to machining toolpaths

• Analyse part geometry and model features into separate travelling salesman problems.

• Develop algorithm to solve the travelling salesman problem.

• Adapt algorithm to generate machining toolpaths to be used on a CNC milling machine.

• Validate the developed algorithm by comparing to currently used tools to generate CNC

milling toolpaths.

1.4 Research Boundaries

This section will identify the various boundaries of this research and define what lies within

the boundaries and what does not. A summary of the research boundaries can be seen in

Figure 1-2

1.4.1 CNC Machining Toolpaths

Generating machining toolpaths is an important part of the manufacturing process as it

describes how a tool will move around a part to remove material and create the finished

product. There is a wide variety of CNC machines used in industry which all require machin-

ing toolpaths. Milling machines, lathes, wire EDM and additive machines are all examples of

machines which utilise toolpaths. However the way in which the toolpaths for these various

machines are generated from features can be fundamentally different and therefore it was

decided for this research to focus on just looking at milling machines.

5

www.EngineeringBooksPdf.com

Figure 1-2: The research boundaries of this research.

Milling machines can have a number of different kinematic set-ups which will alter the

complexity of the toolpath to be used on each type of milling machine. Milling machines

can have up to three linear axes and three rotary axes. The majority of milling machines in

industry will either be 3-axis (three linear axes) or 5-axis (three linear and two rotary axes).

From the literature in Chapter 3 it can be seen that the travelling salesman problem has only

been modelled as a two or three dimensional problem. Therefore the scope of this research

will limit the toolpath generation to 3-axis milling machines.

Finally with regards to machining toolpaths, there are two types of machining that is

typically done. There is the roughing machining process which removes the bulk of the

material at a relatively high rate. This is then proceeded by the finishing machining process

which removes the final layer of material at a lower rate to ensure a certain level of surface

finish and accuracy. This research will focus on the roughing process as the toolpaths are

longer and form a larger part of the machining process, therefore there is more potential for

optimisation of these toolpaths.

6

www.EngineeringBooksPdf.com

1.4.2 Part Geometries and Features

The potential combination of features and geometry on a part is virtually infinite. However,

this research will focus primarily on prismatic parts but will also include prismatic features

that have sloped boundaries to test the toolpath generating algorithm on some basic 3D

features.

1.4.3 Optimisation Algorithms

As identified by the literature review performed in Chapter 3.6.2, quite a few meta-heuristics

have been developed with the aim of solving the standard travelling salesman problem. This

research aims to develop a genetic algorithm to attempt to solve a modified version of the

travelling salesman problem and generate machining toolpaths. The reason for choosing

genetic algorithms is for their modular structure and their flexibility in switching between

individual and multiple objective functions.

1.5 Scope of the Research

This section will define the research scope which has been identified to achieve the research

objectives outlined in Section 1.3:

1.5.1 Review of State-of-the-Art in Toolpath Generation and Optimisation

for Milling Technologies

The current methods of toolpath generation used in industry as well as used in research

have been reviewed and assessed in Chapter 2 alongside a review of the different toolpath

characteristics that are focused on by optimisation algorithms and the methods of doing so.

This literature review identifies the research gaps in this area and provides support for the

objectives specified in this chapter.

7

www.EngineeringBooksPdf.com

1.5.2 Review of Current Methods for Solving the Travelling Salesman

Problem

The travelling salesman problem is a computationally difficult path optimisation problem. A

large number of heuristics, meta-heuristics and algorithms have been developed in the effort

of solving the travelling salesman problem. A review of the most commonly used algorithms

and heuristics in solving the travelling salesman problem has been performed in Chapter 3

with a focus on evolutionary algorithms and in particular genetic algorithms as these were

identified to be the most feasible method of solving an adapted travelling salesman problem

with respect to machining toolpaths.

1.5.3 Specification of a Novel Framework for Realisation of Toolpath Gen-

eration Using a Genetic Algorithm

A theoretical framework of a system used to model and solve machining toolpath generation as

a travelling salesman problem was developed based on the information reviewed in Chapters

2 and 3. The specification and development of the theoretical framework can be seen in

Chapter 3.

1.5.4 Modelling Toolpath Generation as a Travelling Salesman Problem

A method of defining machining toolpath generation as a travelling salesman problem is

outlined in Chapter 4. This process analyses features defined by the STEP-NC standard

and allows for toolpaths to be generated that are defined by the G Code standard. Three

machining toolpath characteristics were modelled into the TSP objective function format to

allow for optimisation of these characteristics.

1.5.5 Developing a Computational Platform to Solve the Travelling Sales-

man Problem

The development and functionality of a flexible and modular optimisation algorithm designed

to solve an adapted travelling salesman problem is discussed in Chapter 4.3. The optimisation

8

www.EngineeringBooksPdf.com

algorithm was designed to produce legal machining toolpaths to be used on a 3-axis milling

machine. The objective functions defined in Chapter 4 are used by the optimisation algorithm

to produce optimised toolpaths with respect to these objective functions in the context of a

3-axis milling machine tool.

1.5.6 Evaluation of the Toolpath Generation Computational Platform

The design of two test parts and a series of test cases is outlined in Chapter 5. One test part

is used as a validation tool of the computational platform’s abilities with respect to an indus-

trially inspired part. It is also used to measure the performance of the optimisation algorithm

which can be compared to other commonly used computational platforms. The other test

part and test cases are used to analyse the performance of the optimisation algorithm as well

as validating the models and methods developed in this research.

9

www.EngineeringBooksPdf.com

Chapter 2

Toolpath Generation for CNC

Milling

2.1 Model Representation

The first stage of generating a machining toolpath is to have an accurate representation of

the part you are going to manufacture. It is important to have a sufficiently accurate model

of the part to ensure that any subsequent methods of toolpath generation will yield useful

results that are within tolerance[7].

A simple and easy to implement method of modelling a part is by using constructive solid

geometry(CSG)[8]. CSG uses boolean operators to combine simpler shapes into more complex

shapes or surfaces. The most common operators in CSG are the difference, intersection and

union operations. Geometric transformations can also be performed in the construction

process. An example of how a CSG part is created and represented can be seen in Figure 2-

1[9]. Although this method is user friendly, it is quite difficult to create very complex surfaces

such as free-form surfaces. To create these, a more flexible modelling system is required.

Boundary representation(B-rep) is another method of model representation which allows

for a more complex part or surface to be modelled than by using CSG as it is more flexible and

has a wider range of operations[10]. B-rep uses many surface elements connected together to

10

www.EngineeringBooksPdf.com

Figure 2-1: The construction of a part represented with CSG.

create a model of the entire surface of a part[11]. Each individual surface can be described

by a number of different types of curves such as: Bezier, B-Spline, or NURBS[12]. B-reps

can be used in the STEP data structure to store surface information of a part or feature.

A part can also be modelled as a collection of voxels[13]. Depending on the accuracy

required, the size of each voxel can be adjusted when creating the model. The benefits

of using voxels is that each voxel has a specific coordinate which can be used to perform

calculations on the surface however the drawback is that if a high accuracy is required then

the number of voxels in the model can be very large and therefore require a lot of memory to

store the information. Figure 2-2[14] illustrates how voxels can be used to represent a part.

Figure 2-2: Solid model representation using voxel layers.

11

www.EngineeringBooksPdf.com

A surface of a part can also be represented using a point cloud. This can be done

by sampling a virtual or real surface in three dimensions and storing the data points in a

collection or cloud. The higher the frequency of sampling, the more points that are generated

in the point cloud. A number of toolpath generation techniques have been developed using

a point cloud method[15, 16].

2.2 Toolpath Generation for Milling Machines

Toolpath generation is an important step in any process that requires precise and controlled

movement of an end effector against the product that is being manufacturing. Effective ma-

chining, in particular, is reliant on toolpaths that are appropriate for the technology, materials

and equipment that are being used. An inappropriate toolpath can lead to part features be-

ing machined out of tolerance, low quality surface finish or excessive machining time due

to inefficiencies. Generating efficient toolpaths is a major area of research as manufacturing

companies can potentially save time and money by incorporating new algorithms into their

manufacturing process.

There is a wide variety of literature available on toolpath generation as there are many

methods of solving this complex problem. A survey paper was written by Dragomatz and

Mann in 1997 which covers many of the widely used methods required to generate toolpaths

for both three-axis and five-axis machines as well as a few non-traditional methods[17]. They

classified the literature based on a number of keywords such as isoparametric paths (where

focus is on surface machining based on parametric spaces); planar pocketing paths (where

the focus is on 2D pockets); tool positioning (where the focus is on precise location of the

tool); and, roughing paths (with the focus on removing large quantities of material quickly).

Whilst efficiency improvements can be made throughout the process, with the large quantities

of material removal in rough machining, efficiency gains could be more substantial. Most

authors have selected the scope of their research based on technology rather than the process

planning stage to focus on either on the generation of toolpaths for three axis milling machines

or those for sculptured surface on five axis machines.

12

www.EngineeringBooksPdf.com

2.2.1 Toolpath Generation for Three-Axis Machining

Generally, fewer variables are considered in toolpath generation for three-axis machining

compared to five-axis machining as the number of control mechanisms is smaller. Effectively,

there are only three variables to consider for each point on the path, linear interpolation

between two points results in a linear trajectory of the tool on the machine and the cutter

contact point is relatively simple to calculate[18].

Traditional methods of generating toolpaths for three-axis machines involve drawing par-

allel lines to the contours on the part[19] with the aim of maintaining constant proportion

of tool engagement to ensure consistent wear. This can be done in a variety of ways: one

method is to use Voronoi diagrams to segment the space within a boundary into sections and

then using offset curves to generate the toolpaths in each space[20]. Figure 2-3 shows how

the feature is separated into segments using the Voronoi method. By moving the boundary

points along the lines of the Voronoi diagram at a constant rate, which can see seen in Figure

2-4, a series of contours parallel to the original feature boundary can be generated.

Figure 2-3: An example of a Voronoi diagram for a simple feature boundary.

Figure 2-4: Offset contours generated from Voronoi diagram.

Persson developed an algorithm which can generate NC machining toolpaths for arbit-

13

www.EngineeringBooksPdf.com

rarily shaped pockets[21]. By segmenting the pocket using bisector lines for each contour of

the pocket, scaled contour lines can be drawn into the pocket which can be joined together

to form a spiral which follows the contour of the pocket. This method has proven to work

well, however can only be used for closed pockets. This method only generated machin-

ing toolpaths which follow a single machining strategy and still required user interaction to

complete.

Figure 2-5: Scaled contour lines generated for an example feature using bisector lines

An algorithm which produces a spiral toolpath between a set of points was developed by

Qiu[22]. This method uses the minimax approximation and produces very smooth curves

from the outermost point to the innermost point. Although the method generates good

results, the method is very limited in its application. It only produces curved arcs between

points and does not produce full machining toolpaths for features or parts.

Yeung developed an algorithm which produces smooth curves between points in a machin-

ing toolpath[23]. This method uses arc-splines between points to smooth the interpolation

between the two points. The developed algorithm also reduces the number of data points

required to represent the toolpath by finding arcs which pass through as many points as

possible. This converts a multipoint linear interpolation to a single arc interpolation. This

is a very useful study which does not produce NC machining toolpaths but does optimise

14

www.EngineeringBooksPdf.com

existing NC machining toolpaths.

Arkin performed a study in which a toolpath adhering to a zig-zag machining strategy

would be generated with the least number of tool retractions[24]. Toolpaths were only gen-

erated for pocket features but yielded good results. However, as discussed in the study,

the toolpaths were not optimal as some retractions were more acceptable than others. The

toolpaths generated only generated one type of machining strategy for one type of feature

which limits the global use of this method for an entire part.

Park investigates a toolpath generation algorithm for bidirectional milling which aims to

find the best orientation for the toolpath with respect to the feature being machined[25]. The

criteria Park uses to find an optimal orientation is the number of retractions the tool has to

perform and the average length of each element of the toolpath. The results of the study

show the algorithm performing well and finding the optimal orientation for the test parts.

A STEP-NC compliant CNC milling machine of 2.5D parts was developed by Lee[26].

The information required to machine the various features is located within the STEP-NC

data structure and can be used to generate machining toolpaths. The test part produced

by the study was had very simple features which indicated the limitations of the developed

controller. This research aims to develop a more complex toolpath generation algorithm to

increase the complexity of the part that can be produced. This will greatly increase the

usefulness of the algorithm as it can be applied to a much wider range of parts.

Generating machining toolpaths for free-form or sculptured surfaces is more challenging

as the surfaces of the part are more complex. The toolpath generation methods mentioned

above work well for pockets and simple features but fail to generate viable toolpaths for free-

form surfaces. The following literature in this section covers toolpath generation for free-form

surfaces for three-axis machines.

Radzevich outlines the various conditions that need to be met in order for a sculptured

surface to be properly machined[27]. The six conditions which are explained in detail within

the paper will need to be taken into consideration when assessing the quality of any machined

part with a sculptured surface in this research. The quality of any test parts produced can

15

www.EngineeringBooksPdf.com

be defined by how well the various conditions proposed by Radzevich are met.

A toolpath generating algorithm for free-form surfaces was developed by Bobrow which

generates machining toolpaths from CSG part representations[7]. The user must select the

various part surfaces to be machined as well as check surfaces. Then the algorithm slices the

part surfaces with planar surfaces and produce intersection curves which will define the lines

of the machining toolpath. Although this algorithm produces machining toolpaths for full

parts, it is not fully automated and does not produce toolpaths which follow a machining

strategy.

Elber introduced a new method for generating 3-axis toolpaths for sculptured surfaces[18].

Instead of using regular iso-parametric curves to generate toolpath lines along a surface,

an adaptive iso-parametric curve algorithm was developed. This ensured that there was a

consistent spacing between curves even for complex geometry where the density of the curves

could vary. This resulted in machined surfaces with a better quality surface finish due to a

consistent scallop height between each pass.

Choi uses a configuration space approach to generate toolpaths for 3-axis machining of

free-form surfaces[28]. By analysing the surface of the part and comparing that to the tool

dimensions, a cutter location surface can be generated by identifying the areas the tool can be

positioned in without gouging or colliding with the part. A Z-map can be created from this

surface with a defined grid spacing depending on the tool size. A toolpath is then generated

from the Z-map by following the grid points in a certain direction. This approach yielded

good results with non-gouging/colliding toolpaths being generated for a complex free-form

surface.

A study performed by Lin develops an algorithm which generates NC cutter toolpaths

for sculpted surfaces from massive data point sets[16]. The surface of the part is separated

into slices depending on the cut depth. A mesh is then created over the entire surface and

a toolpath is generated which follows the contours of the mesh. The disadvantage of this

technique is that the generated toolpaths are not optimal and do not follow any machining

strategies.

16

www.EngineeringBooksPdf.com

A similar study done by Chui presents an algorithm to generate NC cutter toolpaths for

a ball nose cutter from massive point clouds[15]. This is done by separating all of the points

into bands whose width is dependant on the scallop height of the cutter. The generated

tool paths move through all of the points in each band to create the machined surface. This

technique is very limited in the fact that the surface finish is very poor and would only be

appropriate for a roughing cut as well as the lack of machining strategy being applied to

the machining process. Chui improved this process by converting the point cloud into a 3D

triangular mesh and then calculating the local surface normal vectors to the mesh[29]. A

toolpath could then be generated by linking the surface normal vectors with bi-arcs.

Lo discusses the issue of generating constant feedrate toolpaths with respect to cutter

locations[30]. Lo states that the path between cutting locations is different to the path

between cutter contact points, which can lead to a variation in the feedrate between cutter

contact points. This can result in a decrease in the surface finish of the machined part. To

overcome this issue, Lo developed an algorithm to compensate for the difference between

cutter location and cutter contact paths which resulted in an increase in surface quality.

Ding proposes a modified algorithm for the iso-planar toolpath generation method[31].

Surfaces which contain both regions of high surface variability and low surface variability

generate redundant toolpaths using the traditional iso-planar toolpath generation method.

Therefore to overcome this, areas with high surface variability are identified and an iso-

planar toolpath is generated for each individual region. This new method produces much

more efficient toolpaths when compared to the traditional iso-planar method.

Yuwen states that the iso-planar has limitations in toolpath generation and therefore

proposes an iso-parametric method of generating toolpaths which. First the surface is rep-

resented as a triangular mesh and then iso-parametric curves are created which follow the

boundary curves of the surface. This method can produce bidirectional or spiral toolpaths

depending on the surface geometry but not a combination of both.

Feng introduced a new method of calculating cutter location paths[32]. Instead of using an

iso-parametric or iso-planar method, a constant scallop height method was developed. This

17

www.EngineeringBooksPdf.com

method would ensure that the scallop height remained constant across the whole surface and

within the specified tolerance. This was achieved by drawing scallop curves iteratively across

the free-form surface. The resulting toolpaths from this new method were shorter and more

efficient than the iso-planar and iso-parametric methods.

Wu proposed an algorithm to generate machining toolpaths for three-axis free-form sur-

faces using a 3D Z-map representation of the surface[33]. The algorithm produces unidirec-

tional roughing and finishing toolpaths. The Z-map resolution is adjusted depending on the

error tolerance and the tool size. The toolpath is then generated by following the height of

the part across the surface for each pass. The drawback of this method is that unidirectional

toolpaths are very inefficient and by having a constant spacing between each pass across the

surface results in uneven scallop heights.

Zhu developed an algorithm to generate a rough cutting model of a given part[34]. The

original part surface is transformed into a polygonal mesh and then offset by a desired amount

or error. Any intersecting polygons are identified and corrected. This new offset model can

then be used as a basis for toolpath generation to perform roughing on the part.

Lazoglu introduces an algorithm for toolpath generation with cutting force as the optim-

isation goal[35]. The free-form surface is divided into a uniform grid and the cutting forces

between each point and it’s eight neighbouring points is calculated. Then by analysing the

minimum cost connections between all of the points and then connecting all of the individual

connections so that no point is visited twice and every point is visited, an optimal toolpath

with respect to cutting force can be generated.

Lee proposes a mesh based toolpath generation algorithm. The algorithm first generates

an offset mesh from a free-form surface[36]. Any cutter location on this offset mesh will

be interference free. The algorithm then produces a drive plane and creates cutter location

points at each intersection between the offset mesh and drive plane. A new drive plane is

then generated in such a way that the scallop height between the two drive planes is constant.

This algorithm produced toolpaths with a lower error than toolpaths generated with an even

spacing.

18

www.EngineeringBooksPdf.com

The problem with these methods is that they are not very flexible as they are usually

designed to generate toolpaths for specific types of features or using a specific machining

strategy. A universal algorithm is required which can generate a machining toolpath for

any feature as defined by the ISO 10303-21 standard[37] and for any machining strategy as

defined by the ISO 14649-11 standard[38].

2.2.2 Toolpath Generation for Five-Axis Machining

Five-axis toolpath generation has more variables to consider when compared to three-axis

toolpath generation which results in a more complex solution space. Due to this complex

problem, there has been a lot of research in this area. A state-of-the-art review was performed

by Lasemi on CNC machining of free-form surfaces[39]. Three areas of free-form surface

machining were explored which were toolpath generation, tool orientation identification and

tool geometry selection. Also a comprehensive survey on toolpath interpolators, tool posture,

gouging avoidance and adaptable geometric patterns for 5-axis milling was performed by

Makhanov[40].

A 5-axis post-processor was developed by Takeuchi which took cutting locations generated

by CAM software for three-axis milling and optimised the orientation of the tool at each

location so that it was at a normal angle to the surface of the part[41]. The post processor

would also take into account any overcuts between two points and insert additional points to

overcome this issue.

Choi developed a search method which finds the optimal cutter orientations along a given

5-axis toolpath[42]. The yaw and tilt angles of the tool are used as the decision variables to

determine which orientation of the tool is optimal with respect to the previous cutter location.

The search method also takes gouging and collision errors into account. This is a brute force

search method which generates optimal tool orientations but is very slow at finding each

optimal value. This is because the search space is very large and there are multiple variables

to optimise.

Algorithms were developed by Li to generate gouge-free, non-isoparametric 5-axis toolpaths

19

www.EngineeringBooksPdf.com

for free-form surfaces[43]. The cutter contact points are generated by representing the surface

of the part as an approximation of polygons and finding the intersections between a vertical

cutting plane and the polygons. The angles of the tool at each location is then set to the

normal of the surface and adjusted if a gouging error would occur at the point.

Pi developed a ”grind free” toolpath generation algorithm to reduce the size of the scallops

created by the tool between each pass[44]. The method analysed the forward step between

points and step over between passes to consistent and minimal scallop height. By combining

the iso-parametric method of generating tool paths with the grind free method a much better

surface finish was observed on the finished part.

Morishige uses configuration space to optimise the tool orientation of five-axis machining

toolpaths[45]. By mapping the possible tool orientations into C-space and identifying the

regions in which illegal tool orientations exist, a much more efficient method of searching for

optimal tool orientations can be performed. Once the optimal tool orientations have been

generated, intermediate cutting points are generated between each pair of consecutive points

to reduce the angular change between points and increase the smoothness of the toolpath.

Bohez examines the relationship between the ideal linear interpolation between cutter

location points in a toolpath to the actual travelled path between cutter location points on

a five-axis machine[46]. By having a kinematic model of the machine, the generated grid

to produce a toolpath from a surface can be adapted to account for the error previously

mentioned.

Jun developed a configuration-space search method which optimises 5-axis machining

toolpaths[47]. The aim of the method was to generate new toolpaths which did not contain

collisions or gouging errors while optimising the smoothness of the toolpath. The method

first identifies all of the legal tool orientations at each cutting location of the toolpath and

then iterates along the cutting locations finding the tool orientation with least deviation from

the previous point. The method produced results which optimised CAM generated toolpaths

and ensured no gouging or collision errors were present in the toolpath.

Makhanov developed a grid optimisation technique which aims to aid in the generation

20

www.EngineeringBooksPdf.com

of better quality milling toolpaths[48]. The method uses a minimisation function with the

scallop height and milling errors as the goal variables and takes zig-zag and spiral machining

strategies into account. This algorithm is then applied to a pre-existing mesh grid generated

using a marching method to adjust it accordingly.

A study was performed by Toh on the effects of milling strategy and cutting angle on the

surface quality, cutting force and tool life[49]. It was found that with respect to roughing,

the milling strategy and cutting angle had a negligible effect on the surface quality. However

there wasn’t enough data to find a correlation between roughing strategies and angles on

the cutting force and tool life. More focus was put on finishing strategies and cutting angle.

To extend tool life it was found that an angle of 15 ◦ to the normal was optimal. The best

surface roughness was achieved at angles less than 10 ◦ to the normal.

Chen proposed a novel method of optimising the detection of tool interference in five-axis

machining of sculptured surfaces[50]. First the surface is separated into convex and concave

regions as convex regions do not suffer from tool interference. This technique improves the

efficiency of detection as only the required regions are used in the calculation.

Tournier optimised the iso-scallop toolpath generation method by using a machining

surface[51]. By modelling the toolpath as a surface, a more accurate calculation of the scallop

heights can be performed. This method is more computationally intensive but resulted in a

greater consistency of scallop heights produced by the machine tool.

Lu uses the concept of subdivision surfaces to produce an optimal polygonal mesh of a 3D

model[52]. By analysing the errors between the polygonal mesh and 3D model and adjusting

the resolution of the mesh in areas in which the error exceeds the tolerance, an optimal mesh

for a given tolerance can be generated. This reduces the number of points required to model

a part which therefore increases the efficiency of any toolpath generation method.

Anotaipaiboon introduces a new modification to the space-filling curves method of gen-

erating a grid for a free-form surface[53]. First a grid is generated with the scallop height

constraints being taken into consideration instead of the kinematics error. Then the grid

is modified into a space-filling curve or zig-zag path. Finally the number of points along

21

www.EngineeringBooksPdf.com

the path is adjusted to account for the kinematics error. This new method produced better

results for complex free-form surfaces than the original space-filling curve method.

Lavernhe proposes a method of optimising 5-axis high speed machining by introducing

the concept of a guide surface[54]. With high speed machining there is a need for monitoring

the axis acceleration and jerk profiles and ensuring that they are within the machine limits.

Therefore by generating a guide surface which specifies the tool orientation at any point on a

surface, the acceleration and jerk of each axis can be kept within a tolerance. This idea was

tested on a single pass and produced a toolpath with a reduced maximum acceleration and

jerk profile when compared to following the surface normal along the same path.

He proposes a grid generation technique in which the size of the grid spacing varies across

a free-form surface[55]. The grid spacing adjusts depending on the curvature of the free-form

surface. In areas of greater curvature, the grid spacing reduces which increases the resolution

of points in that area. This method assists in producing better quality toolpaths as more

cutter locations are required in areas of greater surface change. The adaptive grid generation

method reduced the magnitude of surface error when compared to the iso-parametric grid

generation method.

Ren developed a method of generating spiral toolpaths for 5-axis milling by mapping a

spiral toolpath onto a free-form surface[56]. The algorithm produced spiral toolpaths for a

test part and produced a machined part with an acceptable surface finish.

Haranud proposes a toolpath generation method for 5-axis milling whereby the free-form

surface is divided into subsections by clustering points which are near one another and have

similar surface normals[57]. Then by determining the optimal toolpath for each subsection a

better global toolpath can be generated. This method increases the surface quality of each

local area of the free-form surface as having a global toolpath direction is not always optimal.

A grid generation method was developed by Anotaipaiboon which optimises the num-

ber and location of points to produce a toolpath with a minimal kinematic error[58]. The

kinematic error is defined by the author as the deviation between the interpolating func-

tion from the actual trajectory. Therefore by manipulating the number and location of grid

22

www.EngineeringBooksPdf.com

points needed to generate a toolpath, a reduction in trajectory error can be made. The

method starts by generating space-filling curves are for the free form surface. These are gen-

erated in such a way such that the maximum scallop height does not exceed the tolerance.

Then a one dimensional grid is generated for each curve and the kinematic error is calculated

for each grid by comparing the desired tool interpolation to an estimated trajectory created

by a kinematic model of the machine. Grid points are then added to the one dimensional

grid to reduce the kinematic error until it is below the tolerance. The results of the study

seem promising. There was up to a 89% decrease in the kinematics error.

Can developed an iso-scallop toolpath generation algorithm for free-form surfaces defined

by the STEP data structure[59]. The algorithm analyses the B-spline surface provided by

the STEP data file and calculates the iso-scallop cutter contact points for that surface. The

number of points are then optimised by calculating the error between cutter contact points

and adjusting the distance between cutter contact points along a path. A tool selection

algorithm was also proposed. The algorithm scans the entire surface of the part and identifies

the region with the smallest radius. This is the maximum allowable radius of a tool to be

used in machining the given surface.

Lasemi developed a method of improving the quality of a finished 5-axis part by analysing

the surface of the manufactured part and adjusted the original cutting locations[60]. The

surface of the manufactured part would be scanned using a CMM or laser scanner and then

compared to the intended surface of the model. Error regions were then located and fed back

into the original toolpath generation algorithm to account for the errors. A case study was

performed which showed a definite reduction in surface error when compared to the original

manufactured part.

The state-of-the-art review by Lasemi revealed a substantial decrease in the overall ma-

chining time and cost of machining due to the various toolpath generation techniques[39].

However, Lasemi states that many challenges still exist in generating quality toolpaths effi-

ciently. The two main challenges still remaining are reducing the computation time required

to generate toolpaths as well as sufficiently reducing the machining time required to machine

23

www.EngineeringBooksPdf.com

parts with free-form surfaces.

The survey by Makhanov revealed the various criteria that are used when generating

toolpaths for 5-axis milling[40]. These criteria were: machining time, toolpath length, kin-

ematics error, scallops, undercuts/overcuts, and rear gouging. The various constraints for

generating toolpaths were also identified which were: machine axis limits, global gouging,

acceleration and jerk of the tool. Many attempts have been made to optimise the various

criteria mentioned when generating machining toolpaths but the survey discovered that no

single solution which optimises all of the criteria mentioned above exists. However, the survey

did identify the most promising methods of optimising each individual criterion which can

be used to develop an overall solution.

2.3 Critique of the Literature

After reviewing the literature it is evident that there is a lot of interest and effort being

made in the field of toolpath generation. A fully functioning method of generating optimised

toolpaths for five-axis CNC milling would be extremely advantageous for the manufacturing

industry to increase productivity. Many solutions have been proposed that aim to optimise

certain aspects of toolpath generation such as cutting forces, surface quality, tool wear, tool

engagement, scallop height and tool rotation.

There is a gap in the literature for a solution that optimises the toolpath length for five-

axis milling. This solution would generate optimal toolpaths with respect to length while

adhering to the constraints of avoiding tool collision and gouging and having the tool angle

be as close to the surface normal as possible.

It can also be said that for three-axis milling, there are many distinct methods of gen-

erating toolpaths which depend on the geometry of the part or the machining strategy that

is required. There is also no current method that considers more than one toolpath char-

acteristic at a time in the optimisation of the toolpath. Therefore there is a gap in current

research to find one toolpath generation method that would be independent of geometry and

produce toolpaths with different machining strategies that would be optimised for a number

24

www.EngineeringBooksPdf.com

of toolpath characteristics.

There is also a lack of research in the generation of machining toolpaths with the specific

aim of shortening the length of the toolpath. As commented by Anotaipaiboon, toolpath

generation and optimisation is nothing more than finding the shortest path possible for a

tool which can machine a part as required [61]. If the problem space was discrete rather than

continuous, this would be equivalent to solving the travelling salesman problem with the tool

tip as the salesperson and the cities representing the material that needs to be removed.

25

www.EngineeringBooksPdf.com

Chapter 3

Theoretical Framework

3.1 Introduction

This chapter will describe the theories and methods that were used to achieve the research

goals and objectives defined in Chapter 1. This chapter will be split into a number of major

milestones which can each be analysed in more detail.

3.2 Milestones

This section and the ones that follow will cover the major milestones that were defined for

this research. The following list is an overview of the milestones that will be covered in detail

in the following sections:

• Modelling Toolpath Generation as a Travelling Salesman Problem

– STEP-NC Interpreter

– Object Oriented Data Storage

– Boundary Adjustment

– Grid Point Generation

26

www.EngineeringBooksPdf.com

• Creating a Computational Platform for Solving the Travelling Salesman Problem

– Developing the Genetic Algorithm

– Optimising the Genetic Algorithm

• Validation of developed models

3.3 Modelling Toolpath Generation as a Travelling Salesman

Problem

The first main objective is to develop a method of representing a part in such a way that

it can be efficient for the toolpath generating algorithm to extract the required information.

This modelling method will transform the part into a travelling salesman problem to be later

solved. It is assumed that the part is defined by the ISO14649 standard[38], therefore an

ISO14649 interpreter is required to extract all of the part information from the STEP-NC

part 21 file[6].

3.3.1 ISO14649 Interpreter

The ISO14649 interpreter will parse through all of the lines contained within a STEP-NC

part 21 file and extract all of the necessary information from it. This information will be

stored in certain variables to be used later when rebuilding the part in the new representation

method.

Figure 3-1 is a section of the part 21 code for an example part described in the ISO14649-

11 standard. It can be seen that some of the lines describe the features of the part. From the

code in Figure 3-1, object #17 describes the position and characteristics of a round hole and

object #18 describes the position and characteristics of a closed pocket. This information

along with that of the workpiece as described by the object #4 is all that is required to create

a representation of the part. Therefore a parser will need to be developed that can parse

through the lines of STEP-NC code and recognise features and workpiece characteristics.

This requires a database to be written that contains all of the possible STEP-NC features as

27

www.EngineeringBooksPdf.com

Figure 3-1: An example part 21 code from ISO14649-11 Annex F.

described by the ISO14649 standard. The parser will then recognise the feature and extract

all of the data within the line of part 21 code that describes the feature.

3.3.2 Data Storage

The data extracted from parsing a part 21 file can be stored in a object oriented program

structure such as Java. An object can be created for every feature type described in the part

21 file as well as an object for the raw workpiece which is also described within the part 21

file. The object can contain all of the information required to define the features such as

position and dimensions.

3.3.3 Creating the Model

A model of the part can be created from the information stored in the objects defined in the

previous section. There are many types of models that can be used to represent the part.

A constructive solid geometry(CSG) technique can be adopted to represent the part. The

initial construction would be the surface of the raw workpiece which would then have the

28

www.EngineeringBooksPdf.com

subsequent features removed from it.

Another technique to represent the part could be using boundary representation(B-Rep).

This is a collection of faces, edges and vertices that create a surface of the part being modelled.

The model would start with the raw workpiece and then the features would be added to the

model.

Both the CSG and B-Rep techniques represent the part as a set of surfaces between edges

or vertices. The nature of the travelling salesman problem is that of finding an optimal path

between a number of points. Therefore if all of the points are along the boundaries or edges

of the part then a machining toolpath cannot be generated using these two techniques.

A more appropriate method would be to have the part represented in a grid format where

each cell in the grid would represent a point on the part. This could be done using a 3D grid

with a resolution sufficiently small to not lose any important feature details. Each block in

the grid would behave as a 3D pixel (also known as a voxel). The travelling salesman problem

can now be performed on all of the voxels that need to be removed from the raw workpiece

to produce the finished product as described by the part 21 file.

Although it is now possible to generate a viable toolpath from the points in the 3D grid,

solving a 3D travelling salesman problem is far more difficult than solving a 2D problem.

Therefore the 3D grid can be replaced with many layers of 2D grids which are spaced apart

according to the cut depth of the tool. Converting the 3D travelling salesman problem into

the 2D layered problem will also more accurately resemble a machining toolpath. This is due

to the cutting tool only being able to remove material at a certain depth with each pass of

the material. Figure 3-2 is an example part with a simple feature.

By analysing the part 21 file for the example part in Figure 3-2, the dimensions and

position of the feature on the part can be extracted. A 2D grid can be created with dimensions

slightly larger than the part itself to allow for tool movement around the part. The resolution

of the grid will depend on the complexity of the features (i.e. does it contain curved features).

For the example part the resolution will be relatively low.

An example of how the grid structure would look can be seen in Figure 3-3. The red cells

29

www.EngineeringBooksPdf.com

Figure 3-2: A simple example part.

Figure 3-3: An example of a 2D Grid for the part in Figure3-2.

30

www.EngineeringBooksPdf.com

in the grid would represent points that shouldn’t be used in the toolpath as this is the feature

that needs to be machined around. The light green cells represent a region around the feature

with a distance equal to the tool radius. This ensures that The dark green cells represent all

of the points on the surface of the raw workpiece that need to be removed. Therefore all of

these points would be included in the machining toolpath. The blue cells represent the space

around the part which can be used if a certain machining strategy requires these points to

be visited.

3.3.4 Data Point Reduction/Optimisation

The second objective is to have an algorithm that can reduce the number of data points

required to represent a part. Large numbers of data points does not always equate to a better

representation of the part. Having an even distribution of points over all of the parts surfaces

would be an example of redundant data points. Only data points along the boundaries of

features and the part are required to represent a part, however, more points are required

to generate a valid toolpath to machine the features of the part. Therefore the number of

points required to generate viable toolpaths for a part will be somewhere in between these two

scenarios and will depend on the radius of the tool, tool overlap and the machining strategy.

It is useful to reduce the number of data points as much as possible for a more efficient

performance of the heuristic algorithm used to generate tool paths from these points. De-

creasing the number of data points decreases the computational effort required to generate

an optimal path through the points. This can easily be seen as the number of possible paths

through N number of points is N!.

NumberofSolutions = N ! (3.1)

Therefore decreasing the number of points dramatically reduces the search space that the

heuristic algorithm has to work with and decreases the time and effort required to find an

optimal solution.

The following sequence of figures illustrates the various stages in the process of reducing

31

www.EngineeringBooksPdf.com

the number of data points required to represent a part.

Figure 3-4: Visualising the grid system for an example part with boundary points.

Figure 3-4 illustrates the grid point system for the example part in Figure 3-2. This grid

differs from the one in Figure 3-3 in that it has orange grid cells which represent points which

are located on the boundary of the part or the boundary of a feature.

The first phase of the data point reduction algorithm would remove data points in such a

way that no two data points would neighbour each other on the grid with the exception of the

data points on the boundary. This reduction can be seen in Figure 3-5. This process by itself

already reduces the number of data points by approximately half of the original amount. The

data points on the boundaries of the features as well as the part itself have been kept as it

is important to keep a greater number of data points in close proximity to areas on the part

with a change in surface.

The second phase of the data point reduction algorithm would remove more data points

ensuring that no data points are within a tool’s radius distance from another data point.

This can be seen in Figure 3-6. Even though the data points have been reduced significantly,

any generated toolpath would still machine the desired part as long as all of the data points

32

www.EngineeringBooksPdf.com

Figure 3-5: First step of the point reduction process.

Figure 3-6: Second step of the point reduction process.

33

www.EngineeringBooksPdf.com

are visited within that generated toolpath.

At this stage any path through the points which does not cross a boundary will be a valid

toolpath which will machine the given feature fully. The optimisation of a path through a

set of points can be seen as a travelling salesman problem.

3.4 Creating a Computational Platform for Solving the Trav-

elling Salesman Problem

The second main objective is the generation and optimisation of machining toolpaths whilst

adhering to various machining strategies. This will be done by taking the travelling salesman

problem produced in the primary objective and solving it so that it fits the set of requirements

needed for a valid machining toolpath. The travelling salesman problem is a problem with a

very large solution space and is very difficult to solve analytically. Therefore a computational

platform will be developed which will contain a meta-heuristic to help solve this optimisation

problem.

3.5 Toolpath Planning Modelled as a TSP

The traveling salesman problem is a very old problem which can be defined as finding the

shortest path between a set of N points[62]. Each point can only be visited once and all

the points in the set need to be visited. Mathematically the problem can be described as

follows[63]. Given a cost matrix D = (d i,j), where d i,j = the cost of going from city i to city

j, (i, j = 1, 2, · · · , n), find a permutation P = (i1, i2, i3, · · · , in) of the integers from 1

through n that minimises the quantity

Q =
n∑

i=1

n∑
j=1

di,j xi,j (3.2)

which is subject to the following conditions

(a) x i,i = 0

34

www.EngineeringBooksPdf.com

(b) x i,j = 0, 1

(c)
∑

i xi,j =
∑

j xi,j = 1

(d) and for any subset S = i1, i2, · · · , i r of the integers from 1 through n,

xi1i2 + xi2i3 + · · ·+ xir-1ir + xiri1

< r for r < n.

≤ n for r = n.

(3.3)

Condition (a) ensures that a point cannot connect to itself. Condition (b) ensures that

each point is visited only once, condition (c) ensures that all the points are visited and

condition (d) ensures that no sub-tours being generated. There are two types of traveling

salesman problem, if di,j = dj,i then the TSP is symmetrical and if di,j 6= dj,i then the TSP is

asymmetrical[64]. The asymmetrical TSP is more challenging to solve as the asymmetric TSP

has to be converted into a symmetric TSP which doubles the size of the cost matrix[65]. The

toolpath generation problem could be viewed as an asymmetrical problem if the goal of the

toolpath considers conventional or climb milling strategies. This is due to some directions of

travel would be preferred to others. However, in this research conventional and climb milling

will not be considered in generating toolpaths and therefore the problem will be viewed as a

symmetrical TSP.

TSPs has been used to describe many path planning problems including job shop planning[66],

robot arm position control[67], pick-up and delivery of products[68] as well as many others.

Toolpath generation can be seen as a TSP much in the same way as any other path optim-

isation problem. The problem of generating and optimising a toolpath can be characterised

as a TSP by representing the feature as a set of points that the tool has to traverse in order

to machine the part. The traveling salesman problem can even be performed on a freeform

surface by calculating the distance between two points across a surface using the algorithm

developed by Maekawa[69]. The cost of traveling between two points would not be the lin-

ear distance but the parametric distance between the two points. Any path that traverses

through all the points in the set can be seen as a toolpath. Any subsequent path that is

generated and produces a lower value for Equation 3.2 can be seen as an optimisation of that

35

www.EngineeringBooksPdf.com

path.

Although the type of TSP that will be developed when modelling the toolpath generation

and optimisation problem will be a variation of the traditional TSP, this review will cover

the various methods used in solving the traditional traveling salesman problem by using

analytical, heuristic and meta-heuristic techniques. The method of solving this new variation

of TSP can be adapted from the current methods of solving the traditional TSP.

3.6 Solving the Traveling Salesman Problem

A survey of methods used to solve the traveling salesman problem was performed in 1968

by Bellmore and Nemhauser[70]. This survey covered the early algorithms and heuristics

developed and compared the performance between these methods. An updated survey was

then performed by Johnson and McGeoch in 1997[71]. As computing power had significantly

improved since the first survey, the complexity of the methods used in this newer survey

increased which resulted in much better performance in solving the TSP. The updated sur-

vey included the best performing heuristics as well as meta-heuristics. Another survey was

performed by Chauhan et al. in 2012[72]. The most recent survey was performed by Jiang et

al. in 2014[73]. This section will cover some of the algorithms discussed in these surveys as

well as continued development in TSP solving algorithms since these surveys were published.

The simplest yet least efficient method of solving a TSP is by calculating all of the

possible path lengths and then choosing the path with the minimum length[74]. This method

is known as the brute force method. It is only feasible for very small problems and can

take an extraordinary amount of time for larger problems[75]. A more efficient method of

solving the TSP analytically is by using the branch-and-bound method[76, 77, 78, 79]. This

method uses a tree to represent the various path permutations. The lower bound and upper

bound values of each branch is then calculated and compared to analyse which branches can

be discarded. This process is repeated until the branch with the lowest value for the lower

bound remains which will contain the shortest possible path. Some variations of the branch-

and-bound method have been developed to improve the efficiency of finding the optimal

36

www.EngineeringBooksPdf.com

solution[80, 81, 82].

The challenge with the traveling salesman problem is that the number of solutions to

each problem is a factorial of the number of points to be visited. Hence finding an analytical

solution to the traveling salesman problem is only feasible for problems with only very few

points. Already at 15 points, the number of solutions is over 1.3×1012. Therefore heuristics

are used to solve the problem in a more time efficient manner.

3.6.1 Heuristics

A heuristic is a problem solving process which learns and adapts from previous experience

and knowledge to obtain a solution[83]. They are a lot quicker than standard analytical

problem solving techniques when the problem space is very large, however the disadvantage

to using heuristics is the quality of the solutions generated. The solutions generated will most

likely be approximate or near optimal depending on the heuristic used and the structure of

the heuristic[84].

The nearest neighbour algorithm is a simple and efficient heuristic for solving the TSP[85,

70]. The heuristic works by starting at a random point in the set and then determines the

next closest point to it and adds that point to the path. This process continues until all of

the points have been visited. This heuristic can be improved by starting the algorithm from

each point in the set to find the best possible path using the nearest neighbour algorithm.

A similar heuristic to the nearest neighbour algorithm is the greedy algorithm[86]. This

algorithm starts with the edge with the lowest cost in the set and then removes all the edges

connected to the two chosen points. This process is then iterated until all of the points have

been inserted into the path.

The Clarke-Wright heuristic works in a different way to the previous two[87]. A point

in the set is chosen to be the ”hub” point. The path then follows each other point in the

set but visiting the hub between each pair of points. The algorithm then ranks the savings

that could be obtained if the path between any two points were to skip the hub. The hub is

then removed from each sub path in order of most cost savings per iteration until only two

37

www.EngineeringBooksPdf.com

points are connected to the hub and a full path is created. This algorithm produces better

results than the Greedy and Nearest Neighbours heuristics but requires more computational

effort[86].

The Christofides algorithm is another heuristic developed to solve the TSP[88]. This

algorithm starts by creating a minimum spanning tree of the set of points. On all of the

nodes with odd degrees, perform a minimum cost matching process to convert these odd

nodes into even nodes. Finally convert the path into a Hamiltonian path by skipping visited

nodes.

These four heuristics produce solutions to the TSP within 10-15% of the optimal path[71].

These heuristics are commonly referred to as approximation algorithms in the literature.

Johnson performed an experimental analysis of these four approximation algorithms and

found that although the Christofides algorithm performs the best at around 10% of the

optimum, it is over five times slower than the Greedy algorithm which produces results at

around 16% of the optimum[89].

Due to the lack of quality in the solutions they generate on their own, they are usually

used to construct an initial path as a baseline for other heuristics or meta-heuristics to further

improve upon the results from these four heuristics. It is also a lot quicker to produce results

within 10-15% of the optimal solution with these heuristics than to start with random paths

and optimise them to the same level using better heuristics or meta-heuristics.

The following set of heuristics are known as local search algorithms. These heuristics take

a given path for a TSP and attempt to modify them iteratively by exchanging edges until no

further improvement can be found. These heuristics are also known as neighbourhood search

algorithms as one path can be described as a neighbour to another path if it only requires

one move to switch between the two.

The simplest local search algorithm is the 2-opt exchange algorithm proposed by Croes[90].

The algorithm works by removing two edges from the path and rejoining the path by using

the other two possible edges that will create a full path without subpaths. The algorithm

scans all the possible exchange moves and calculate the cost that could be saved with each

38

www.EngineeringBooksPdf.com

one and performs the best exchange for each iteration. This process continues until no further

improvements to the path are possible. Figure 3-7 shows an example of a 2-opt exchange.

Figure 3-7: An example of a 2-opt exchange with the resulting path.

The 3-opt exchange algorithm was proposed by Bock and developed by Lin[91, 63]. This

algorithm works in the same was as the 2-opt exchange algorithm but removes three edges

as opposed to two. With the 3-opt method there are two possible ways to exchange the

edges so that no subpath is created. These two possible exchanges can be seen in Figure 3-8.

This method produces more optimal results compared to the 2-opt method but due to the

increased number of possible exchanges this method requires more computational effort.

Figure 3-8: An example of a 3-opt exchange with the two possible exchanges.

Bentley also describes a similar local exchange algorithm as being 2.5-opt[92]. This al-

gorithm removes a point from the path and inserts it elsewhere in the path that would provide

the best cost savings for the path. This process also removes three edges from the path and

inserts three new edges into the path in a similar manner to the 3-opt exchange algorithm.

An example 2.5-opt exchange can be seen in Figure 3-9 where point B is removed from the

39

www.EngineeringBooksPdf.com

D-B-E subpath and places into the A-B-C subpath. The 2.5-opt method requires only slightly

more computing power than the 2-opt method but produces substantially better paths.

Figure 3-9: An example of a 2.5-opt exchange.

One of the best performing local search algorithms was developed by Lin and Kernighan in

1973 and is known as the Lin-Kernighan(LK) heuristic[93]. This is an adaptive algorithm that

combines the 2-opt and 3-opt exchange methods and calculates which of the two exchanges

produce the best possible cost savings for the path. It was also proposed to keep a list of

both the added and deleted edges so that the heuristic does not attempt to add an edge that

was deleted or delete an edge that was previously added. The LK heuristic was the best

performing local search heuristic for solving the TSP up until 1989[71]. Johnson proposed a

variation of the LK heuristic which only considered maintaining the list of added edges[94] as

opposed to only maintaining a list of deleted edges as proposed by Papadimitriou[95]. It was

found that the method of only maintaining the list of added edges performed much better

than maintaining both lists or just the deleted edges list. This was due to the increase in

search space of the algorithm and the fact that added edges were more important than deleted

edges as some deleted edges could still appear in the final iteration of the algorithm[71].

The most notable adaptation of the LK heuristic was developed by Helsgaun in 2000

known as the Lin-Kernighan-Helsgaun(LKH) heuristic[96]. This method uses one-tree ap-

proximations of the set of points to create a list of the best edges for each point. This is

combined with the possibility for k-opt moves where 2≤k≥5. This widens the search space

of the algorithm allowing for better results at the expense of taking longer. Using the one

tree approximation reduces the computational effort required compared to regular exchange

algorithms. Helsgaun further developed the LKH heuristic in 2009 to allow for k-opt moves

40

www.EngineeringBooksPdf.com

where 2≤k<N as well as a partitioning and merging algorithm to break the overall set of

points into subproblems which can be solved individually and rejoined. This new adapta-

tion is known as the LKH-2 heuristic and when combined with an approximation algorithm

to generate start tours it has been shown to outperform all other developed heuristics to

date[73].

There has been a lot of development in the field of heuristics with respect to solving

the traveling salesman problem. Preiss states that it is important for a heuristic to have

the capability of backtracking so as not to converge on a non-optimal solution[3]. However,

the most efficient method used to solve the traveling salesman problem are evolutionary

algorithms which avoid backtracking. They overcome this issue by being able to explore a

large solution space very efficiently and converge on an optimal solution without then need

to backtrack. The main types of evolutionary algorithms used to solve the traveling salesman

problem are genetic algorithms, ant colony optimisation systems and simulated annealing

which will be covered in the next section of the literature review.

3.6.2 Meta-heuristics

Meta-heuristics are a higher level heuristic which generate approximate solutions to optim-

isation problems without having to consider every possible solution. Meta-heuristics are

generally used for problems that have a very large solution space that cannot be efficiently

explored using heuristics or analytical methods[97]. Many types of meta-heuristics have been

used in solving the TSP due to its very large solution space. Ant colony optimisation, genetic

algorithms, tabu search, simulated annealing and neural networks have all been used to solve

the TSP[98]. The three best performing meta-heuristics were genetic algorithms, ant colony

optimisation and simulated annealing[71].

(i) Genetic Algorithms

Genetic algorithms are used as meta heuristic problem solving technique in many types

of industries and has many applications[99]. It is modelled after the process of biological

41

www.EngineeringBooksPdf.com

evolution of species by natural selection. The algorithm is based off of the work done by Fraser

in 1957 where the evolutionary process was simulated using computational methods[100, 101].

This was further developed and adapted into an algorithm to solve mathematical problems

by Holland in 1975[102]. Genetic algorithms are an efficient method of converging on an

optimal solution when there is a large problem space to analyse.

In this process, individuals improve their ability to survive in an environment over many

generations by imparting beneficial characteristics which allow a greater chance of survival to

their offspring. These characteristics are defined by the genetic information contained within

an individual.

New genetic material can be introduced into a system by the means of genetic mutation.

This allows for new characteristics to be observed and improvements to be made to previous

characteristics.

Genetic algorithms to tackle the traveling salesman problem were first developed by Brady

in 1985[103]. By modelling the system as the environment and by defining the various solu-

tions to the traveling salesman problem as individuals with each gene representing a point in

the path, the optimal path could be evolved from an initial population of random non-optimal

solutions.

Genetic algorithms have a standard structure:

• Step 1: Create initial random population

• Step 2: Calculate fitness of individuals

• Step 3: Selection of individuals for reproduction

• Step 4: Crossover of genes

• Step 5: Mutation

• Repeat steps 2-5

Each of these steps can be observed in nature and need to be modelled in a genetic

algorithm for it to function properly. Many operators have been proposed for the various

42

www.EngineeringBooksPdf.com

Figure 3-10: A flowchart showing the structure of a typical genetic algorithm

components of a genetic algorithm. Some operators work better than other in all problems

were as some only outperform other in specific problems. As the order of the genes are

important when solving the TSP with genetic algorithms, the operators that will be reviewed

(a) Species Selection To create a new generation from an existing population, a pair

of individuals need to be chosen to reproduce. One or more individuals can be used to

do this in different ways. A survey and experimental analysis of selection operators for

genetic algorithms was performed by Blickle and Thiele in 1995[104]. This section covers the

operators analysed in this survey along with other operators developed after the survey was

performed.

Miller demonstrated how the performance of the genetic algorithm is dependent on the

selection pressure applied to the population by the selection operator[105]. If the selection

pressure is high, the genetic algorithm will favour species with higher fitness levels and con-

verge much faster than if the selection pressure is low. The drawback is that with high

selection pressure, the probability of early convergence increases due to the narrowing of the

43

www.EngineeringBooksPdf.com

search space. Therefore it is important to balance the selection pressure for the required

problem.

The simplest method of achieving this is to select the fittest individual of each generation

and sufficiently mutate the genetic information to simulate reproduction. Although this is

the quickest method as it bypasses the crossover stage, it has a very high chance of converging

on a non-optimal solution as this method narrows the search space very quickly[106].

The next best method is to have the top N fittest individuals of a population reproduce,

this is called tournament selection[105]. A subset of size S is selected from the total popu-

lation. This subset is then filled randomly with individuals from the population which then

compete to be in the selection pool. The winner will be the individual with the highest

fitness. The amount of selection pressure is dependent on the size of S. This method reduces

the search space relatively quickly and performs better than the previous method.

Mühlenbein uses a truncation selection operator which sorts the population into order by

their fitness and then selects a proportion of the population to be copied and mutated to

return the population to its original size[107]. The truncation operator has only been used

in a small number of genetic algorithms since its establishment. This is probably due to the

high selection pressure it places on the population which can cause early convergence in the

genetic algorithm[104].

Another method is to rank the population according to the individual’s fitness value and

then use a function that randomly selects the parents which is weighted towards the rank.

This method is called the Linear Ranking Selection Operator[108, 109]. Therefore the higher

the rank, the more likely an individual will be chosen. This method is an improvement to the

previous method as it still favours better performing individuals to reproduce while accepting

lower performing individuals to reproduce to avoid premature convergence on a local maxima.

A similar method is to use a function that selects parents according to their relative

fitness. This method is known as roulette wheel selection or fitness proportional selection[102].

This method ensures the least reduction of the search space while still favouring better

performing individuals. Sengoku uses this method in a TSP solving genetic algorithm with

44

www.EngineeringBooksPdf.com

an added function where similar individuals are eliminated[110]. This removes any duplicate

individuals which can cause premature convergence. If the top two performing individuals

in a population have the same chromosome then crossing over these two individuals will not

create a new chromosome. Therefore by eliminating duplicate individuals, gene crossovers

will be performed on differing individuals and will create new chromosomes which keeps the

solution space wider for longer.

A new operator was developed by Kureichick which helps a genetic algorithm avoid getting

stuck in local minima[111]. If many of the individuals in a population have the same length,

it can be assumed that a local minima has been reached. If this is the case, then all of the

individuals with the same length are modified except for one individual. This prevents early

convergence and helps the genetic algorithm to generate an optimal solution.

The experimental analysis of selection operators performed by Blickle and Thiele in 1995

showed that the Tournament selection and Linear Ranking selection were the best performing

selection operators for genetic algorithms[104]. This finding is reinforced by the amount of

genetic algorithms in the literature that use these two operators and the lack of development

of new selection operators. The paper also analysed the effects of selection pressure on

population variance and algorithm convergence which can be used to decide which operator

is more suitable for a problem being solved using a genetic algorithm.

(b) Gene Crossover In non-ordered chromosomes, gene crossover is a straightforward

process of randomly selecting a gene from each parent or by taking an average value of the

two. This cannot be done with ordered chromosomes as the individual’s fitness is dependent

on the order of the genes contained within a chromosome. Duplicate gene values are also

generated using the non-ordered crossover methods, therefore it is best to use crossover

techniques designed for ordered chromosomes[112]. Üçoluk discusses the various techniques

that can be used for crossing over genes in an ordered chromosome genetic algorithm[113].

The first technique is disqualification, where invalid solutions created by ordinary crossover

operators are given extremely low fitness values. The second technique is reparation, which

feeds the invalid solutions into an intermediate process which repairs any duplicate or omitted

45

www.EngineeringBooksPdf.com

points. The third technique is to use only special operators which are designed for ordered

chromosomes which produces only valid chromosomes. Disqualification is a very inefficient

technique as a lot of computational effort is spent generating invalid solutions. Reparation

does generate valid chromosomes however as it requires an intermediate stage it is very time

consuming compared to using special operators as these generate valid chromosomes without

the need of a secondary stage.

The crossover operator that is used for the genetic algorithm depends on the format of the

chromosome in terms of the representation of the genes. There are a number of different types

of gene representations each with crossover operators which function for that representation.

In a review performed by Larrañaga[114], the various representations are analysed. The

following is a brief summary of the various representations with the most common crossover

operators for each.

(b.1) Binary Representation One way of representing the gene values is by convert-

ing the number of the city into a binary value. For example, if a chromosome contained the

genes 0-1-2-3-4-5, then the equivalent in binary representation would be:

(000 001 010 011 100 101)

To cross over the genes in the chromosome, the classical crossover was proposed by Holland

in 1975[102]. A crossover point is chosen and all of the genes beyond that point is copied from

one parent and all of the genes before that point is copied from the other parent. This cros-

sover technique creates paths with duplicate points or omitted points which do not represent

a valid solution for the TSP. Also the classical mutation operator was not very successful

as this often created invalid solutions for the TSP. The classical mutation operator would

randomly select a bit in the chromosome and invert its value. For example, if the first bit

was mutated in the previous example chromosome then the outcome of that mutation would

be:

(100 001 010 011 100 101)

Which is an invalid solution as the 100 point appears twice and the 000 point does not appear

at all in the chromosome. This method was applied to the TSP by Lidd in 1991 but only

46

www.EngineeringBooksPdf.com

yielded optimal results for low numbers of cities[115].

(b.2) Path Representation Another way to represent the cities in the chromosomes

is to assign a numerical value to each city and the same numerical value to the gene corres-

ponding to the position of that city in the chromosome. Therefore a path with the genes

0-1-2-3-4-5 will have the following chromosome:

(0 1 2 3 4 5)

This representation has many operators that have been developed for conserving the order

of the genes as well as avoiding duplicate genes and omitted genes. The following is a list of

the crossover operators found in literature:

• Order Crossover (OX1)[116]

• Order Based Crossover (OX2)[117]

• Variations of Ordered Crossover (VOX)[118]

• Partial Mapped Crossover (PMX)[119]

• Genetic Edge Recombination Crossover (ER)[120]

• Cycle Crossover (CX)[121]

• Position Based Crossover (POS)[117]

• Heuristic Crossover (HX)[122]

• Sorted Match Crossover (SMX)[103]

• Maximal Preservative Crossover (MPX)[107]

• Edge Assembly Crossover (EAX) [123]

• Voting Recombination Crossover (VR)[124]

• Alternating-Position Crossover (AP)[125]

• Relative Order Crossover (ROX) [112]

47

www.EngineeringBooksPdf.com

The crossover algorithms mostly function in one of two methods. The genes can either

be crossed over and then analysed to repair any duplicate or omitted genes, or the new

chromosomes are created in such a way as to avoid duplication or omission.

(b.2.1) Partially Mapped Crossover The partial mapped crossover operator was

developed by 1985 by Goldberg and Lingle[119]. This operator takes two parent chromo-

somes and selects a random section of the chromosome and maps the values of the genes to

the same section on the other parent. For example, if the two following parents are chosen:

Parent 1 - (0 3 7 5 4 1 8 2 6)

Parent 2 - (0 5 8 2 6 3 1 4 7)

If the 5-4-1 section of genes are chosen for mapping from Parent 1 and mapped onto the same

section of genes in Parent 2:

Parent 1 - (0 3 7 5 4 1 8 2 6)

Parent 2 - (0 5 8 2 6 3 1 4 7)

Then it can be seen that gene 5 maps to gene 2, gene 4 maps to gene 6, and gene 1 maps

to gene 3. Now the two different offspring can be created by rewriting the parent genes with

the mapping of the genes as previously specified.

Offspring 1 - (0 1 7 2 6 3 8 5 4)

Offspring 2 - (0 2 8 5 4 1 3 6 7)

The emboldened genes indicate which genes have been altered due to the mapping. This

method ensures the order of the genes are kept as well as inheriting a section of the chromo-

some from one of the parents while preserving as much of the rest of the chromosome of the

other parent.

(b.2.2) Edge Recombination Crossover A lot of information can be obtained by

looking at the genetic edges of a chromosome. The edge of a gene looks at the spaces between

certain genes. Consider the following two parent chromosomes:

Parent 1 - (0 3 7 5 4 1 8 2 6)

Parent 2 - (0 5 8 2 6 3 1 4 7)

48

www.EngineeringBooksPdf.com

If the gene value of 4 is chosen for this example, then the genes on either side of gene with a

value of 4 is examined in both parents.

Parent 1 - (0 3 7 5 4 1 8 2 6)

Parent 2 - (0 5 8 2 6 3 1 4 7)

In Parent 1, gene 4 has an edge with gene 5 and gene 1. In parent 2, gene 4 has an edge with

gene 1 and gene 7. Therefore the genetic edges of gene 4 would be 1, 5 and 7. To perform

the Edge Recombination Crossover, all of the edges of two parent chromosomes need to be

analysed. All of the edges for the example parents can be seen in Table 3.1.

Gene Value Genetic Edges

0 3, 5, 6, 7
1 3, 4, 8
2 6, 8
3 0, 1, 6, 7
4 1, 5, 7
5 0, 4, 7, 8
6 0 ,2, 3
7 0, 3, 4, 5
8 1, 2, 5

Table 3.1: Genetic edges for example parent chromosomes

Now that the genetic edges have been analysed, a new offspring can be created using

the edge information. By starting with a random gene value, for example 2, the gene that

follows will either have a value of 6 or 8 according to Table 3.1. Therefore the gene value is

randomly chosen from the selection of edges available. This process continues until all of the

gene values have been chosen. These are the two main types of crossover operators for path

representation chromosomes.

(b.3) Adjacency Representation Another method of representing the cities in a tour

of a TSP is the adjacency representation. In this representation each gene value represents a

path between the city with a value of the position of the gene, and a city with a value of the

value of the gene. For example the chromosome with city values:

49

www.EngineeringBooksPdf.com

(0 3 7 5 4 1 8 2 6)

Can be written in adjacency representation in the following way:

(3 8 6 7 1 4 0 5 2)

Which can be better understood by expressing each value in the chromosome as a sub-tour

between two points:

(0→3, 1→8, 2→6, 3→7, 4→1, 5→4, 6→0, 7→5, 8→2)

By following each path, a full tour around all of the points can be made. There are a number

of crossover operators which can be used with the adjacency representation:

• Alternating Edge Crossover (AER)[126]

• Sub-tour Chunks Crossover (SCX)[126]

• Heuristic Crossover (HC)[127]

The most common chromosome representation used in the literature is the path representa-

tion. There are many well established operators for this chromosome representation for both

crossover and mutation. This is due to the fact that because of the simple nature of the

chromosome structure (i.e. each gene value corresponds to a particular point) the crossover

and mutation operators are a lot simpler and produce viable individuals far more frequently

than operators used in the other chromosome representations[120].

A comparative study was performed by Starkweather compares 6 different crossover oper-

ators on a 30 city traveling salesman problem. Each operator was fine tuned with respect to

all of the other variables in the genetic algorithm (i.e. population size, mutation rate etc.). It

was found that the order crossover operator outperformed all of the other crossover operators.

It was discussed that operators which most preserved the order of the chromosome performed

better. As only one traveling salesman problem was tested it is not conclusive whether the

ordered crossover operator is the most efficient.

Abdoun discusses and analyses a number of crossover operators for the traveling salesman

problem[128]. These include: Uniform crossover, Cycle crossover, Partial mapped crossover,

50

www.EngineeringBooksPdf.com

Uniform partially mapped crossover, Non-wrapping ordered crossover, Ordered crossover,

Crossover with reduced surrogate and Shuffle crossover. The various crossover operators were

used to find a solution to the BERLIN52 traveling salesman problem. All of the other genetic

algorithm operators and variables remained constant so as to compare the performance of

the various crossover operators. It was found that the Ordered crossover and Non-wrapping

ordered crossover had a very similar performance with both operators performing significantly

better than all of the other tested operators. It cannot be said that these two operators are

the most efficient operators for all TSP scenarios as only the BERLIN52 scenario was tested.

A study was carried out by Yoon to analyse the effects of combining various crossover

operators and compare the performance of different combinations with respect to using only

one crossover operator[129]. It was found that there was an increase in performance when

combining various crossover operators but it was not conclusive as to which combination

produced consistently better results when tested on various problems.

(c) Mutation Operator A vital part of the genetic algorithm is the mutation operator.

Mutation occurs after a new individual is created using a gene crossover operator. This

ensures that new genetic material is introduced into the population with each generation

and prevents early convergence on a non-optimal solution. Early convergence is avoided

with mutation as the search space is kept from diminishing when new gene combinations

are inserted into the population[130]. There are many types of mutation operators that

exist in literature. However, most of the operators are used in conjunction with the path

representation of chromosomes as mutations in this particular representation produce the

most viable and “legal” toolpaths[114]. The following is a list of common mutation operators

found in literature:

• Displacement Mutation (DM)[131]

• Exchange Mutation (EM)[132]

• Insertion Mutation (ISM)[133]

• Simple Inversion Mutation (SIM)[102]

51

www.EngineeringBooksPdf.com

• Inversion Mutation (IVM)[134]

• Scramble Mutation (SM)[117]

• Partial Shuffle Mutation (PSM)[135]

• Reverse Sequence Mutation (RSM)[135]

The most common mutation operator for non-ordered genetic algorithms is to select a

gene at random and assign a new random value to that gene from the list of possible values.

However this is not a viable option for ordered genetic algorithms as this creates points

that are visited more than once or not at all, which is a non-legal solution to the traveling

salesman problem. Therefore special operators have been designed to prevent this from

occurring. The special operators work on the basis of altering the order of chromosomes

instead of the individual value of each gene. This ensures that no two points are repeated as

well as no points being omitted. There are two main types of mutation operators, the first

type of mutation switches the position of two or more genes and the second type of mutation

reverse the order of a number of genes within a chromosome.

A more unique mutation operator was developed by Sengoku[110]. A gene is selected at

random and all of the possible paths are analysed. The mutation operator then chooses any

new path that is shorter then the current path. This technique increases the likelihood of a

beneficial mutation which decreases the time taken to converge on a solution.

A study was performed by Abdoun which discusses and analyses a number of mutation

operators for the traveling salesman problem[135]. These include: Twors mutation, Centre

inverse mutation, Reverse sequence mutation, Throas mutation, Thrors mutation and Partial

shuffle mutation. The various mutation operators were used in solving the BERLIN52 travel-

ing salesman problem and then analysed to compare the performance of the various mutation

operators. The study found that the Reverse sequence mutation operator outperformed the

other operators by a significant amount. It cannot be said that the Reverse sequence muta-

tion operator is the best choice for all traveling salesman problem scenarios as it was only

tested on one problem.

52

www.EngineeringBooksPdf.com

Merz[136] revisited the most commonly used operators for solving the traveling salesman

problem and identified potential improvements for these operators. It was also concluded

from the study that the performance of various operators depends greatly on the rest of

the structure of the genetic algorithm. One mutation operator can work very well with one

crossover operator but less well when used with another crossover operator.

A more recent study performed by Al-Dulaimi developed a Travelling Salesman Problem

Genetic Algorithm (TSPGA) which tested the effects of mutation rate on three commonly

used crossover operators: OX, PMX and CX[137]. It was found that the mutation rate has

a large impact on both the convergence rate as well as the quality of solution generated for

all three operators. The OX operator was most sensitive to mutation rate whereas the PMX

and CX operators were less sensitive to mutation rate.

A novel mutation operator was developed by Liu which instead of being completely ran-

dom has a learning function which increases the likelihood of a beneficial mutation[138].

This new mutation operator almost consistently produced optimal solutions to many stand-

ard traveling salesman problems and outperformed the Edge Assembly Crossover algorithm

with respect to reaching an optimal solution. The drawback to the complex mutation oper-

ator is the computational effort required which dramatically increased the time required to

converge on an optimal solution.

An innovative genetic algorithm based on immunity and vaccines was developed by Jiao

to solve the traveling salesman problem[139]. Local areas of high fitness will become immune

to mutation and these areas of high fitness can also be ”injected” into low fitness individuals.

This technique has proven to decrease the time taken to converge on an optimal solution as

well as increase the quality of solutions generated.

A hybrid genetic algorithm was developed by Gupta which uses a special heuristic to

create an initial population as opposed to a completely random initial population[140]. The

hybrid algorithm was tested on three separate problems and compared the performance of the

hybrid algorithm to a simple genetic algorithm. It was found that the generated solutions were

a lot better for the hybrid algorithm than those generated by the simple genetic algorithm.

53

www.EngineeringBooksPdf.com

Uğur developed a genetic algorithm which generates solutions to traveling salesman prob-

lems whose points lie on the surface of a cuboid[141]. This algorithm could be adapted to be

used for machining parts with features on more than one face which will require reorientation

of the part using a five-axis machine.

(ii) Ant Colony Optimisation

Ant colony optimisation is another type of heuristic problem solving technique. The idea was

first proposed by Dorigo in 1991[142] which was further developed until 1996[143]. Dorigo

then developed the Ant colony System (ACS) in 1997[144] which produced better results

for most of the problems tested than other heuristic processes. It can be seen as a multi-

agent system modelled after the pathfinding behaviour of ants in nature. As ants travel

to and from locations they leave behind a pheromone along the path they travelled. This

pheromone increases the likelihood of other ants following the same path. The pheromone’s

strength decreases over time making paths that are longer less likely to be followed. This is

because the pheromones will build up faster on paths that have shorter lengths. Therefore

over time the ants will eventually converge on a path that is shorter than the original path

chosen by the ants.

Ant colony optimisation performs well in real time systems where obstacles can be in-

troduced or removed at any time as the ants are very quick in altering parts of a path to

account for such changes in the environment [144]. The nature of ant colony optimisation

systems makes them very quick at converging on solutions for the traveling salesman prob-

lem. There have been a number of ant colony optimisation systems developed to solve the

traveling salesman problem.

Ant colony optimisation has been used for path planning in many applications one of

them being spray forming[145]. A study was done by Tewolde comparing the use of genetic

algorithms and ant colony optimisation on path planning in spray forming. It was found that

genetic algorithms produced faster results at the cost of lower quality solutions[145].

Manfrin developed an ant colony optimisation system where a number of systems were

54

www.EngineeringBooksPdf.com

run in parallel[146]. The various systems running in parallel communicate with each other

by passing certain information between each system. Five different types of communication

were tested and it was found that overall it was beneficial to run multiple systems in parallel.

The developed ant colony optimisation system was tested on a large number of problems.

Tsai created a novel ant colony optimisation algorithm which included a multiple nearest

neighbour and dual nearest neighbour algorithm[147]. Both methods involve adapting the

algorithm which generates the initial paths. A starting point is chosen at random, and then

the nearest neighbour is chosen as the next point and so on until all of the points have been

visited. This algorithm has shown to dramatically improve the solutions generated as well as

the time taken to converge on the optimal solution.

(iii) Simulated Annealing

Simulated annealing is a global optimisation technique inspired by the annealing process in

metallurgy developed by Kirkpatrick in 1983[148]. There is very little literature relating to

simulated annealing with respect to solving the traveling salesman problem. This could be

due to the success of other heuristic methods.

Kirkpatrick developed a simulated annealing algorithm to solve a traveling salesman

problem[149]. The problem contained a set of 6406 holes which needed to be drilled. The

algorithm performed well for this problem but the simulated annealing algorithm was not

compared to any other existing techniques in this study. Therefore it is hard to say whether

this method performs better than other heuristics.

Bookstaber developed an algorithm to solve the traveling salesman problem using simu-

lated annealing[150]. The algorithm was tested on a 100 city problem where the points were

positioned in a uniform grid. The most optimal solution generated by the algorithm had a

length of 106.142. The optimal solution has a length of 99. Therefore the accuracy of the

algorithm is quite low when compared to the other heuristic processes.

Malek performed a study comparing simulated annealing to tabu search algorithm when

solving the traveling salesman problem[151]. Both algorithms produced solutions to the

55

www.EngineeringBooksPdf.com

various traveling salesman problems tested, however the tabu search method outperformed

simulated annealing for each test.

3.6.3 Multi-Objective Meta-Heuristics

Many machining optimisation problems contain more than one objective. This is especially

the case with five-axis machining toolpath generation. This is due to the many variables that

need to be considered in five-axis milling as the angle of the tool has to be considered as well

as the position. The only efficient method of solving these types of optimisation problems is

by using a multi-objective algorithm.

A novel method of defining the genes and structure of the generated tool path was de-

veloped by Car[152]. The surface of the part was converted into a 2D grid with one cell

being the start of the tool path and another cell the end. From the start point, the tool path

can move in one of four directions (up, right, down, left). This continues for each cell until

the end point cell is reached. The fitness is then calculated as a multi-variable function of

how many cells have been visited, the number of turns and the overall distance travelled. A

novel crossover operator is used for this genetic algorithm as it requires the ability to handle

varying lengths of chromosomes. The genetic algorithm performed better than analytical

algorithms for large grid sizes but not for small grid sizes. This genetic algorithm is limited

in the fact that it can only generate tool paths for uniform square grids and does not allow

diagonal movement. Another problem with this algorithm is that it allows for points to be

visited more than once or not at all which can lead to inefficient toolpaths.

An evolutionary algorithm was developed by Weinert to optimise toolpaths for multi-axis

die and mould machining[153]. The algorithm uses a three dimensional toolpath as its input

and then generates a multi-axis toolpath. The variable of the algorithm is the rotational

axes of the tool and the fitness is calculated by simulating the machining of the part and

detecting any collisions between the tool and part. A second simulation is run to analyse the

deviation of the tool trajectory to the interpolated trajectory by using the kinematic model

of the machine. A third simulation is run to calculate the tool engagement while cutting

56

www.EngineeringBooksPdf.com

the workpiece. Therefore the evolutionary algorithm has multiple objectives to consider and

optimise which increases the computational effort required to calculate the fitness of each

individual. The paper did not state any times required to generate solutions. The results

showed that the developed algorithm gave a slight improvement to simple parts but had

difficulty converging on a solution that fit all the objectives for more complex parts.

Kersting et al. developed a multi objective evolutionary algorithm that optimises NC

paths[154]. By integrating the multi-objective properties of the SPEA 2 system and the

single-objective stochastic optimiser CMA-ES a new system ICSPEA was created. The two

objectives of the algorithm is to produce toolpaths that deviate as little as possible to the

surface normals and to produce smooth toolpaths. The results showed that the algorithm

produced smooth toolpaths but had trouble also producing toolpaths close to the surface

normals which led to issues with consistent tool engagement.

Kersting further developed the multi objective evolutionary algorithm that optimises NC

paths produced by CAM systems[155]. Again the objectives of the algorithm is to produce

a toolpath with the least deviation of the tool orientation to the surface normals and to

produce smooth toolpaths. However a hybrid evolutionary algorithm was developed which

first generated optimal cutter locations with respect to surface normals and then the toolpath

was optimised between the generated points. The optimised toolpaths also have to consider

any tool collisions and if the machine tool can achieve the required orientations. The overall

toolpath to be optimised is also separated into many sub paths to decrease the degrees of

freedom for the optimisation problem and reduce the time required to produce solutions.

The results from the research produced improved toolpaths with less erratic movement and

a more consistent tool engagement.

Jiao proposes a new multi-objective evolutionary algorithm where a sub-population is

created for each objective[156]. The various sub-populations then interact with each other

to obtain a global optimum. This method displayed a greater efficiency in converging on

a global optimum than other multi-objective algorithms. This novel method will be useful

when creating the population structure for the genetic algorithm as the toolpath generation

57

www.EngineeringBooksPdf.com

problem is a multi-objective problem.

3.7 Challenges in adopting TSP for toolpath generation

A conclusion that can be made from the literature is that all of the research in solving

the TSP is focused on reducing the length of the path. This makes sense as the original

problem of the TSP is to reduce the length, however if the TSP is to be adapted to provide

solutions for machining toolpaths then other characteristics of the path need to be taken into

consideration in the optimisation algorithm. The approximation and local search algorithms

were designed to reduce the length of the path and would not be appropriate in optimising

for other characteristics. Meta-heuristics have the advantage of specifying the objective

function in the optimisation strategy which makes them ideal for optimisation of various

path characteristics. The fact that there is the possibility of optimising a machining toolpath

for multiple objectives at the same time, a multi-objective meta-heuristic would be the most

suitable option.

From the literature on solving the traveling salesman problem it seems that multi-objective

evolutionary algorithms would be an ideal tool to use to generate and optimise CNC milling

toolpaths. There has been a lot of research in solving the TSP and it seems that although

they might be slower than the well established Lin-Kernighan algorithm and its adaptations,

the results produced by genetic algorithms are slightly superior. Genetic algorithms also

have the added benefit of having a modular structure that can be customised to solve for

various objectives with only a slight adjustment in the overall architecture of the system.

The approximation algorithms can be used to generate the initial population of the GA. The

survey performed by Jiang of all the current optimisation algorithms for the TSP revealed

that the combination of an evolutionary algorithm with a local search algorithm generated

the best results in solving the TSP.

There are many tested operators for genetic algorithms which are both ordered and non-

ordered as well as for single or multiple objective problems. The performance of the various

operators is dependent on the problem being solved and is also very difficult to predict the

58

www.EngineeringBooksPdf.com

performance. Testing all of the operators found in the literature would be infeasible, therefore

the top three operators for each module of the genetic algorithm will be investigated.

The algorithm designed by Car [152] can be used as a baseline for this research as it was

the only example in the literature that attempted to solve the same problem as this research.

The performance of this algorithm is quite limited and does not tackle many of the problems

that will be covered in this research therefore the comparison can only go so far.

It can be seen in Section 3.6.2 that genetic algorithms are very efficient at reducing large

problem spaces and have been used to solve similar problems. The meta-heuristic to be

used in solving the travelling salesman problem will therefore be a genetic algorithm. The

structure of the genetic algorithm is modular in nature which allows for a high degree of

flexibility in the generation of machining toolpaths for various objectives. This will also

increase the ease of development as each module can be optimised independently. There is

a large set of developed operators for the various modules of the genetic algorithm. This

increases the chances of obtaining the most efficient selection of operators for this problem.

3.8 Developing the Genetic Algorithm

The genetic algorithm will be developed in an object-oriented programming language. This

will make full use of the modular structure of a genetic algorithm by defining the various

modules and sub-modules as objects. The programming language to be used will be Java as

the computational platform can be developed independent of which operating system is being

used. This increases the flexibility of equipment for the developed program to be tested and

used with.

The first stage of development will focus on the structure of the computational platform

and the genetic algorithm. To adhere to the modular approach, the inputs and outputs of

each module will have to be determined first. This will help prevent any issues when switching

between modules. Once this has been done then the actual development of each module can

take place. The genetic algorithm can be separated into the following main modules:

59

www.EngineeringBooksPdf.com

• Main Module

• Data Point Storage

• Fitness Function

• Mutation Operator

• Crossover Operator

• Selection Operator

• Population

The main reason it is beneficial to have a modular approach is the fact that modules can

be easily altered or replaced without affecting the overall functionality of the program. As

long as the inputs and outputs remain the same, the program will function. This modular

approach will be useful when testing various genetic algorithm operators. As discussed in

Chapter 3.6.2, there are many operators which have been developed for solving the travelling

salesman problem using genetic algorithms. The performance of each operator varies greatly

depending on the structure of the rest of the genetic algorithm. Therefore the ability to

switch the various operators by replacing modules will decrease the amount of time required

to optimise the genetic algorithm.

The genetic algorithm would use the data points generated from Chapter 4 as its input

parameters. The data points will each be labelled with an assigned number. For example,

if there are 100 data points, then they will be labelled from 0 to 99 in the order that they

are entered into the genetic algorithm. These data points will then be stored and used every

time the fitness of a species is calculated.

3.9 Optimising the Genetic Algorithm

There are many factors that affect the rate at which the genetic algorithm converges on a

solution. To optimise the genetic algorithm to converge on an optimal solution in the least

60

www.EngineeringBooksPdf.com

amount of time, these factors need to be fine tuned. Firstly the various factors need to be

identified. The following is a list of factors which affect the rate of convergence:

• Population Size

• Mutation Rate

• Mutation Operator

• Selection Rate

• Selection Operator

• Fitness Function

• Fitness Function Weightings

• Crossover Operator

Some of the factors listed above are dependent on other factors. For example, certain

crossover operators perform better with a low mutation rate whereas other crossover oper-

ators perform better with a high mutation rate. Therefore each factor cannot be optimised

individually but will need to be optimised in conjunction with the other factors it is dependent

on.

Optimising the population size is difficult as a large population size greatly increases

the computational power required to generate a new population, however having a large

population size decreases the rate at which the search-space of the genetic algorithm reduces.

This generates more optimal solutions at a cost of an increased time to converge on that

solution.

As there are a large number of operators developed for genetic algorithms, it would be

very time consuming to program and test every operator found in Chapter 3.6.2. Therefore

only the top three overall performing operators for each module will be programmed and

tested in the development of the genetic algorithm.

61

www.EngineeringBooksPdf.com

To identify the optimum operator for each module, each of the three operators for each

module will be put through a Monte Carlo test. A Monte Carlo test was chosen as the best

method for this due to the stochastic nature of a genetic algorithm. The selection, crossover

and mutation operators all contain random number generation elements which can lead to an

overall variation between the generated toolpaths. Therefore by using a Monte Carlo test it

is possible to identify which operators are outperforming the others statistically. The number

of iterations required to obtain a sufficient representation of the performance of each operator

will have to be determined first. The method of determining the number of iteration required

is described in a study by Mundform et al[157]. An initial test is required at a much lower

number of iterations to identify the variation in the generated toolpaths. From this it can be

determined how many iterations are required to be within a set confidence level.

Once the operators have been selected, a sensitivity analysis will have to be performed

on the other remaining factors. This will determine the sensitivity of the various factors and

their dependency on each other. This information will be vital in the optimisation of the

genetic algorithm. The sensitivity analysis will be performed as described by Iooss et al[158].

The results of the analysis will, in turn, be used to fine tune the parameters of the algorithm.

3.10 Validation

The various models developed in this research will need to be validated. One way to validate

the results of a meta-heuristic is to compare the results generated by the meta-heuristic to

results generated by solving the same problem by brute force. Due to the nature of the

problem being solved, it will be difficult to fully validate a large sized travelling salesman

problem by brute force within the time constraints of the research as well as the equipment

available. However there is a database of standard travelling salesman problems which also

have a global optimum solution for testing purposes[159]. This library of sample instances

of the travelling salesman problem is known as TSPLIB. The library contains a variety of

travelling salesman problem types including the symmetrical travelling salesman problem

which most closely resembles the problem being solved in this work.

62

www.EngineeringBooksPdf.com

The global optimums of the TSPLIB only take into account the path length when solving

the TSP. Therefore these global optimums can only be used to verify the first objective

function of the genetic algorithm. The nature of the points in the standard problem sets

of the TSPLIB vary slightly from the TSPs being solved in this research. The point sets

generated for the toolpath problem will produce a uniform grid as opposed to the TSPLIB

problems which contain a non-uniform set of points. Fundamentally the nature of the problem

being solved is the same as the position of the grid points do not influence the method of

which the problem is solved if the path length is the only objective being optimised.

The other objective functions will have to be validated by comparing the generated paths

to the global optimums identified by the brute force method. This will result in the valid-

ated problems containing fewer points than there would be in a normal toolpath generation

problem. Therefore a method has been devised which compares the generated results to the

brute force results for a set of problems with incrementing number of points to verify that

the number of points in the problem does not influence the quality of the generated results

from the genetic algorithm.

63

www.EngineeringBooksPdf.com

Chapter 4

Creating a Computational Platform

for Generating Optimised Toolpaths

This chapter discusses modelling toolpath generation in the form of a travelling salesman

problem.

4.1 Theoretical Model of Toolpath Generation as a

Travelling Salesman Problem

The main objective of this research as outlined in Chapter 1.2 is to generate and optimise

a machining toolpath for a given feature. The various techniques to do this were discussed

in Chapter 2, however one method that has not been explored is to model this problem as a

travelling salesman problem. This is due to the large solution space that exists when solving

the travelling salesman problem.

If the problem can be simplified sufficiently without losing too much accuracy then the

travelling salesman problem becomes easier to solve. By coupling the problem simplifica-

tion with a suitable optimisation heuristic which is designed to solve the adapted travelling

64

www.EngineeringBooksPdf.com

salesman problem it will be possible to find a solution.

The number of solutions that exist for a traditional travelling salesman problem is entirely

dependant on the number of points in the problem set. As any point can connect to any

other point and each point has to be visited at least once, the number of solutions can be

calculated as follows:

NumberofSolutions = N ! (4.1)

Therefore reducing the number of points in the problem is the only way to simplify the

problem. Theoretically there are an infinite number of positions that a tool can occupy in a

toolpath, but the available positions that the tool can occupy can be limited in such a way

that a valid toolpath can still be created from the set of points.

Before the problem can be solved it is important to set up the problem in the most efficient

way to make it as easy as possible to solve whilst still giving a useful solution. To do this

the minimum number of points to represent a machining volume needs to be determined.

The machining volume can be modelled as a three dimensional grid with an appropriate

resolution. The maximum spacing between points needs to be calculated in order to reduce

the number of points in the grid as much as possible. This will be dependent on various

factors such as the accuracy required, feature shape and tool parameters.

Once the grid has been set up, the custom travelling salesman problem can be developed.

The mathematical model for traditional travelling salesman problems can be seen in Chapter

3.5 with Equation 3.2. This model will have to be adjusted to solve the problem of toolpath

generation. The d i,j term in Equation 3.2 represents the cost of going between two points in

the grid. The cost can be altered in such a way as to optimise different parameters of a path.

For this research, three main attributes of toolpaths will be analysed and optimised. The

overall length of the path, the average tool engagement of the path, and the straightness

of the path. The path length is important as the longer a toolpath is, the longer it takes

to machine a feature or part. Therefore by reducing the path length, more parts can be

produced in the same amount of time. To use path distance as a measure of cost, the cost

65

www.EngineeringBooksPdf.com

term in Equation 3.2 will be replaced with Equation 4.2.

di,j =
√

(xj - xi)2 + (yj - yi)2 + (zj - zi)2 (4.2)

Where the x, y, and z terms are the axis coordinates of each point. This equation can be

used for a three dimensional grid. For a two dimensional grid the same equation can be used

with the z term removed or set to zero.

The tool engagement is important as the amount of tool engagement can have an effect on

the tool life and the quality of finish of the part. A constant tool engagement will produce a

better surface finish of the part due to the chips being produced by the tool will be the same

size and this will leave a smoother surface. By reducing the tool engagement, the force applied

to the tool is reduced and this will reduce the wearing of the tool and increase the tool life. A

lower tool engagement also results in a longer machining time as the volume of material being

removed is reduced and it will therefore take longer to remove all of the required material.

It is then important to ensure that the tool engagement is below a specified threshold but

as close as possible to that threshold throughout the entire toolpath. To optimise a toolpath

with respect to the tool engagement, the cost term in Equation 3.2 will be replaced with

Equation 4.3

di,j =
Ti,j

N
(4.3)

Where Ti,j is the average tool engagement between points i and j and N is the number

of points in the toolpath. This will give the average tool engagement for all of the sub-

paths in the toolpath when substituted into Equation 3.2. Then instead of optimising for the

minimum value in Equation 3.2 the optimum will be getting the output of Equation 3.2 to

be as close as possible to a given value of tool engagement. A consistent tool engagement is

a beneficial characteristic for a toolpath to have as it ensures that the chips being formed by

the tool will be of constant size. This leads to a better surface finish and less tool wear.

It is important to keep a toolpath as straight as possible which can be done by avoiding

66

www.EngineeringBooksPdf.com

sharp turns. This is because sharp turns in a toolpath can lead to kinematic errors in the

machine due to high acceleration of the motors. The straightness of a toolpath can be

calculated either by the sum of the angles between points, or as a number of non straight

sub-paths in the toolpath. The resulting toolpath will vary depending on which type of

straightness is measured. Both methods of optimising for straightness will be modelled and

analysed to investigate their effects on the generated toolpaths.

The optimisation of the straightness of the toolpath will be a secondary goal of the optim-

isation algorithm. This is because it is important to keep the toolpath straight regardless of

whether the primary goal is toolpath length or tool engagement. Therefore the optimisation

algorithm will be a multi-objective algorithm. Having multiple objectives can lead to a larger

solution space and an increased complexity in defining the optimisation algorithm. However,

when properly balanced and tuned the optimisation algorithm can produce the required res-

ults. The development and balancing of the objective function can be seen in Section 4.3.3

of Chapter 4.3.

4.2 Creating a model from STEP-NC Data

This section explains the process of generating an appropriate model of a part or a feature

with the purpose of creating a machining toolpath to manufacture said part or feature. The

design of the model has several requirements for it to thoroughly fulfil the goal stated above.

The requirements are as follows:

1. The model should be able to handle features described by the STEP-NC (ISO14649)

standard.

2. The model should allow for machining toolpaths to be generated solely from the data

contained within the model.

To satisfy the first requirement, the model will have to be able to store three dimensional

information about the part or feature. This will allow 2.5D and 3D features to be modelled.

Also the model should be precise enough to retain complex surface and boundary information

67

www.EngineeringBooksPdf.com

which will allow accurate toolpaths to be generated from the model. A process is also required

that will interpret the STEP-NC data to be able to generate a model from.

To satisfy the second requirement, a data storage module will be created to hold any

necessary information needed to generate a toolpath from. The minimum amount of inform-

ation needed to generate a toolpath will be analysed. The module will also allow additional

non-essential data to be stored to create more comprehensive toolpaths. Safeguards will be

put into place to ensure all essential information is available in the STEP-NC code before

generating the model.

The process for generating a model from STEP-NC code will be split into several sub-

processes. The first step is to parse through and interpret the STEP-NC code. All essential

and non-essential information will be extracted and stored in a Java data storage. The feature

and part boundaries need to be converted into polygons. The boundaries need to be adjusted

appropriately so that the areas contained within the new boundaries represent all the legal

positions for a machining tool to occupy. Finally a three dimensional array of points will

then be generated to represent the material that needs to be removed from the raw billet to

create the finished part. The model now contains all of the required information to create a

machining toolpath to manufacture a specified part.

The following sections will describe each step previously mentioned in detail.

4.2.1 Interpreting the STEP-NC Code

Before developing a STEP-NC interpreter, it is important to investigate what information is

required to generate a toolpath for a feature. STEP-NC code can be rich in manufacturing

information and part information but only a portion of that information is actually relevant.

To generate a toolpath for a feature, the minimum amount of information required is the

boundary and depth of the feature and the size of the tool. This allows the volume of

material that needs to be machined to be calculated. Additional information can be used to

create a more specific toolpath such as a machining strategy or an average tool engagement.

Therefore the list of information that will be analysed by the STEP-NC interpreter will be

68

www.EngineeringBooksPdf.com

split into two categories, essential and non-essential information.

Essential Information Any information that is required to create a toolpath which will

produce a finished feature within the specifications of a part will be classified as essential

information. The following is a list of essential information:

• Tool radius

• Feature boundary

• Boss boundaries

• Feature depth

• Feature wall slope

Non-Essential Information Any information that adds complexity or detail to the gener-

ation of machining toolpaths will be classified as non-essential information. This information

can generate more favourable toolpaths or increase the performance of the overall machining

for the part. The following is a list of non-essential information:

• Cut depth

• Tool engagement

• Safety height

• Cutting parameters

Now that the information to be extracted has been identified, a parser can be created

that will parse through all of the STEP-NC data, extract the necessary data and store the

data in the storage module. This can be developed in Java as a STEP-NC translator has

been developed by Aydin Nassehi which converts the STEP-NC code from an Express data

structure to a Java data structure. This allows for easier access to the STEP-NC data with a

Java program. Each instance in the part 21 code can be created into a Java object. All of the

69

www.EngineeringBooksPdf.com

instances can then be stored in an array which is called the population. Then the interpreter

can iterate through all of the objects in the population array until any objects containing

essential or non-essential information is found. The information can then be transferred into

the data storage module to be later used in creating the part or feature model.

4.2.2 Extracting Boundary Information

To generate a basic toolpath a model of the machining area needs to be created. Feature

boundaries can be modelled in various ways within the STEP-NC data structure. All bound-

ary profiles in STEP-NC are created by using a set of points with either straight lines between

the points or a type of curve. A set of points with straight lines between them is called a

polyline. This is the simplest form of boundary representation and the most straightforward

to convert from the STEP-NC model to a Java model. One method of modelling curved

boundaries is by using a composite curve. This method uses a segment of a circle to model

a curved path between points. This is done by using the circle centre point, radius, start

point and end point to draw a curved path between the start and end point. An example of

a composite curve and how it is formed can be seen in Figure 4-1.

Instead of developing a program to deal with all of the different types of curve represent-

ations in STEP-NC, only the composite curve representation was considered. This is due to

the fact that a program was developed by Xianzhi Zhang [160] which could interpret G-Code

and convert it into STEP-NC using only polyline and composite curve segments to represent

the feature boundaries. As these two types of boundary segments could accurately model any

generic feature boundary, it was decided that it was not necessary to account for the various

other curve types.

To convert the boundary information into a usable data structure, the STEP-NC bound-

ary segments are converted into the Java data structure by parsing through the STEP-NC

boundary data points and instantiating equivalent Java objects to store the boundary in-

formation in. Polyline segments can easily to converted as the coordinate information will be

the same in either data format, however composite curve segments need to be approximated

70

www.EngineeringBooksPdf.com

Figure 4-1: The construction of a composite curve.

to a polyline for any useful operations to be performed.

To approximate the composite curve segment as a polyline, the circular path needs to

be sampled into a number of straight line paths. To make sure that accuracy is not lost

the sampling rate has to be adjusted accordingly. Longer circular paths need to be sampled

more frequently than short paths to maintain a similar accuracy. The error in approximating

a curve to a set of straight lines is dependant on the number of points used. Figure 4-2

illustrates the error that occurs in approximating a curve.

Figure 4-3 demonstrates how this error can be reduced by inserting additional points into

the polyline. The error between the straight line and curve can be calculated as long as the

radius of the curve and the angle between two points in the polyline. The radius of the circle

and the start and end points of the curve are all given in the STEP-NC object for a composite

curve. The angle between consecutive points in the polyline depends on the number of points

contained within the polyline. Therefore it is possible to calculate the number of points

needed to attain a specific value of error. Inversely you can calculate the approximation error

with a specific number of points. This is useful as the more points that are contained within

71

www.EngineeringBooksPdf.com

the polyline, the more computations that will be required in the following steps in creating

the model. Therefore having the least number of points possible will speed up the model

creation process.

Figure 4-2: The error in approximating a composite curve.

Figure 4-3: The reduction of error in approximating a composite curve.

From figure 4-2 the relationship between the segment angle and the approximation error

as described by Equation 4.4 can be observed.

72

www.EngineeringBooksPdf.com

cos
θseg

2
=
d

r
(4.4)

The segment angle can be calculated by dividing the total angle by the number of lines

as seen in Equation 4.5.

θseg =
θ

P − 1
(4.5)

By substituting the segment angle from Equation 4.5 into Equation 4.4 and solving for

the number of points P it is possible to calculate the minimum number of points required to

achieve an error of e as seen in Equation 4.6.

P =
θ

2 cos−1 r−e
r

+ 1 (4.6)

By using Equation 4.6, composite curves can now be approximated to a polyline with

sufficient accuracy as specified by the user. This will allow all of the boundaries detailed

within the STEP-NC code to be modelled and stored within the Java data structure.

4.2.3 Offsetting the Boundary

The current boundaries represent the area of material that needs to be removed. However,

what is required for the final model is the bounded area of all the legal positions that a

machine tool of specified diameter can located. Therefore all of the boundaries need to be

offset by the tool radius so that at no position within the offset area, the tool area will not

cross the original boundary. Figure 4-4 demonstrates how a tool position within the original

boundary can allow the tool area to cross the feature boundary.

To avoid this, all of the edges present in the various boundaries need to be offset by

the tool radius. Feature boundaries will be deflated and boss boundaries will be inflated to

ensure the tool area will always be within or on the specified boundaries. Figure 4-5 shows

an example of how the feature boundary offset works.

73

www.EngineeringBooksPdf.com

Figure 4-4: An illegal position of the tool within the original boundary.

Figure 4-5: Offsetting the original boundary to remove illegal positions.

74

www.EngineeringBooksPdf.com

Before the boundary can be offset, the direction of the boundary must be identified. This

is to determine which side of the boundary contains the material to be removed. This can

be done by using Gauss’s area formula (also known as the Shoestring formula)[161]. Gauss’s

area formula can be seen in Equation 4.7.

A =
1

2

∣∣∣∣∣
n−1∑
i=1

xiyi+1 + xny1 −
n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣ (4.7)

Gauss’s area formula subtracts the area inside the polygon from the area surrounding the

polygon. If the result is negative than the polygon is clockwise and the inside of the polygon

will follow the right side of the boundary. Therefore in the case of a clockwise polygon, each

edge will be offset towards the right.

The next step is to identify whether a vertex has a reflex angle. A regular vertex will

only require one point to model the offset vertex whereas a reflex vertex will require two

points. This will ensure that the original boundary will be formed when a tool traces the

offset boundary. Now all of the edges of the boundary will be offset to their right by the tool

radius. An example of this process can be seen in Figure 4-6. The green line represents a

new edge created from a reflex vertex.

Once all of the edges have been offset, the area inside the new polygon represents all

of the legal positions for the tool to occupy. This area will now need to be converted into

a discreet set of grid points so that a travelling salesman problem can be formed from the

points and then be solved.

4.2.4 Generating a Z-Map

From the literature it was found that an efficient method of representing the machining area

is by using a Z-map. As it is now possible to extract the machining boundaries from the

STEP-NC code, a Z-map of the machining area can be created.

The first step is to assess the maximum and minimum points in all of the axes to obtain a

complete envelope of all possible locations for a grid point. This is done by parsing through

the boundary points and identifying the maximum and minimum coordinates. Then an evenly

75

www.EngineeringBooksPdf.com

Figure 4-6: An example boundary containing a reflex vertex with all of its edges offset

spaced grid of points will be generated between the minimum and maximum points. The

spacing of the grid depends on the tool diameter and the tool engagement if available. If no

tool engagement value is available then the grid spacing will simply be the tool diameter. As

this is the maximum allowed spacing between points where if all of the points are visited, all of

the required material will still be removed. It is important to reduce the number of points in

the grid as much as possible as the computing power required to generate toolpaths is almost

solely dependent on the number of points in the grid. If a value of the tool engagement is

available then the grid spacing will simply be as follows:

GridSpacing = ToolDiameter × ToolEngagement (4.8)

This requires the tool engagement to be given as a percentage. The tool engagement is a

metric which describes the amount of material that is touching the leading edge of a tool as

a percentage of the total area of the leading edge of the tool.

Once all of the grid points have been generated, they have to be tested to see which points

lie within the feature boundaries and outside of any boss boundaries. To do this the ray

76

www.EngineeringBooksPdf.com

casting method developed by Taylor[162] was used. This method casts a line both forwards

and backwards along the x axis from the point that is being tested. It then calculates the

number of boundary lines that are crossed to assess whether the point is within the specified

boundary or not. An illustration of the ray casting method can be seen in Figure 4-7. The

number of boundary crossings from the given point to either the maximum or minimum value

on the x axis. If the number is odd then the point being tested is inside of the boundary and

if the number is even then the point is outside the boundary.

Figure 4-7: An example of the ray cast method with a point inside and a point outside the
boundary.

As this method only checks whether a point is within a boundary and not on a boundary,

a separate operation has to be performed to see whether the point being tested intersects

with any of the boundary lines for the specified boundary. Therefore any point that lies on

a boundary or within a boundary will be accepted and added to the set of grid points. This

process of filtering through the grid points can be seen in Figure 4-8.

If the feature contains a boss then a similar check will have to be performed. For a boss

boundary check, a grid point will be accepted if the point lies on the boundary or outside of

the boundary. This will be done for all of the boss boundaries present in the feature if the

feature contains more than one boundary.

77

www.EngineeringBooksPdf.com

Figure 4-8: Grid point selection flowchart.

78

www.EngineeringBooksPdf.com

4.2.5 Generating a Z-Map for a 3D Feature

For 2.5D features, the previously described process will work and each grid of points will be

identical for each cut depth. This is because the cross section of the machining area for the

feature remains constant regardless of depth. However, 3D features can have sloped edges or

planes with varying depths. This means that the machining area will vary depending on the

depth and a new grid of points will have to be created for each depth.

The depth of each cut will depend on the specifications of the tool as well as the tolerance

of the feature. As the machining volume will be cut into layers, there will be an error in

the machining due to the scallops left between the various cut depths. An example of the

scallops can be seen in Figure 4-9.

Figure 4-9: An example sloped pocket with scallop error between layers.

This error can be reduced by decreasing the cut depth of the tool. This will result in

an increased number of layers for the program to process. Therefore the smaller the scallop

error, the longer it will take to generate a toolpath for the feature, as well as the longer it

will take to machine as there is an increased number of passes. Figure 4-10 shows a reduction

in the scallop error when compared to Figure 4-9 but at the cost of having twice as many

passes.

Once the cut depth has been selected, the machining area for each layer needs to be

79

www.EngineeringBooksPdf.com

Figure 4-10: A reduction in the scallop error between layers by using a smaller cut depth.

calculated. This is done by offsetting the sloped boundaries by the appropriate amount for

each layer. The offset will depend on the slope angle and the cut depth. The slope offset

calculation can be seen in Equation 4.9.

Slope Offset = Cut Depth× tan θ (4.9)

Where θ is the slope angle specified by the STEP-NC program. The slope offset will

be added to the tool radius offset to calculate the total offset required by the program to

adjust the machining area to account for the slope. The total offset calculation can be seen

in Equation 4.10.

Total Offset = Tool Radius + (Cut Depth× tan θ) (4.10)

The optimisation algorithm will have to run for each layer as the machining area will vary

slightly between the layers. This will require a lot more computational effort when compared

to a 2.5D feature but will result in a more accurate feature as this method can now account

80

www.EngineeringBooksPdf.com

for sloping boundaries. The higher the accuracy that is needed from the user will result in

more layers being generated and thus more computational effort.

The Java program can now successfully read through STEP-NC data, extract the neces-

sary information required to make the model, convert boundary information into Java polyline

objects, and offset the boundaries appropriately depending on various factors. These steps

can be visualised in Figure 4-11a.

The program can also generate a uniform grid of points inside the area of the specified

boundaries accounting for any boss boundaries. This step can be seen in Figure 4-11b. All

of the green points are accepted grid points and any red grid points lie outside of the offset

feature boundary.

Now that the grid of points has been generated for the machining area of the feature,

any path that goes through all of the points without intersecting a boundary will be a valid

toolpath as all of the material will be machined. To generate an optimal toolpath will require

some sort of optimisation process which will be explained in the following section.

4.3 Developing the Genetic Algorithm

After reviewing the literature and researching the various optimisation algorithms that have

been developed, it was decided to use genetic algorithms as the heuristic tool to solve the

toolpath generation and optimisation problem. This was because of their modular structure

and flexibility with respect to defining various objective functions and being able to easily

switch between them. Genetic algorithms are very efficient at reducing the solution space

quickly and finding near optimal solutions to complex problems.

The travelling salesman problem is a very complex problem with a very large solution

space even with a relatively low amount of points to travel between. The toolpath generation

problem outlined in Chapter 4 is a multi-objective optimisation problem which creates an

even more complex solution space and therefore genetic algorithms are a great tool to use to

solve this problem.

81

www.EngineeringBooksPdf.com

(a) Feature boundary being offset by the tool radius.

(b) Generated grid and the selected points to be used in the genetic algorithm.

(c) Generation of the machining toolpath.

Figure 4-11: Generating a machining toolpath for an example feature

82

www.EngineeringBooksPdf.com

4.3.1 Overall Structure of the Genetic Algorithm

Genetic algorithms are modelled after the process of evolution by natural selection. Instead

of having a population of organisms there is a population of solutions to a problem. The

population is then tested to see how well they solve the problem that has been assigned and

gives each solution a score or ”fitness.” Then certain solutions will be selected to produce new

solutions from the data they contain. Their genes are crossed over in a specific way and then

mutated to form new solutions and the cycle starts again. As the generations of solutions go

by, the better solutions will survive while the poor performing solutions are ”killed” off and

over time the solutions will evolve by better solving the objective. Eventually the process

will stop improving when either a local or global optimum is found.

The genetic algorithm consists of four main modules: Selection, Crossover, Mutation, and

Fitness Function. Each module has an important role to play in the optimisation process.

Each module is modelled after its equivalent process in the natural mechanism of evolution.

All the modules have to me carefully designed so that they all work together to achieve the

same end objective.

The selection module decides which individuals are chosen to produce new offspring. The

crossover module creates a new offspring by selecting and mixing the genes from the parents

into the new offspring. The mutation module introduces new genetic material by randomly

altering the offspring’s genes. The fitness function scores how well a individual solves the

problem assigned to it.

There were some drawbacks to genetic algorithms that had to be overcome. Genetic

algorithms are prone to premature convergence when a solution is found that is a local

minimum or maximum. Also, for non regular feature shapes and features with a boss, not

all paths that can be made will be legal toolpaths as they may cross a boundary and affect

the finish of the machining feature. Another problem is that for optimisation problems

without a known end point it is impossible to know whether the generated solution is the

global optimum or a local optimum. These three issues were taken into account throughout

the development of the genetic algorithm and the means by which they were overcome are

83

www.EngineeringBooksPdf.com

discussed in their relevant sections in this chapter.

4.3.2 Initial Conditions of the Genetic Algorithm

The design of the initial state of the genetic algorithm is an important step as it sets up

the initial solutions which will subsequently be optimised to the final solution. Before any

individuals are generated, a distance matrix is created to store all of the distance values

between points. This optimises the genetic algorithm by only having each distance calculated

once and not repeatedly. The genetic algorithm can go through thousands of generations and

with the path slowly optimising through the generations it will result in many of the path

sections being repeated through this process. Therefore by using a distance matrix to store

the pre-calculated distances, a lot of computing effort will be saved.

Using the distance matrix, a second nearest neighbours matrix can be created. The

nearest neighbours matrix contains all of the x nearest points to each point in the grid. This

matrix is crucial for generating the initial population and for the mutation operator. While

generating the nearest neighbours matrix, all of the illegal paths are not considered so as to

minimise the chances or any illegal toolpaths being generated. It was decided to have the 24

nearest points to each grid point be stored in the nearest neighbours matrix as this would

include two layers of surrounding points to be stored which allows for more flexibility in the

generated toolpath in complex sections of a feature.

If the tool engagement is to be calculated in the genetic algorithm, a separate engagement

grid is generated for the feature. This grid will be a much higher resolution version of the

grid already generated for the feature and will be used to track the material removed along

a generated toolpath and is required for calculating the tool engagement for the toolpath.

The engagement grid is essentially a bitmap which models the status of material at a certain

point in the feature. Figure 4-12 is an example of a ternary grid for the example part in

Figure 3-2. A value of 0 represents no material at that point, a value of 1 represents material

that should be removed and a value of 2 represents material that should not be removed such

as material outside of the boundaries of the feature. If the tool removes a point which had a

84

www.EngineeringBooksPdf.com

value of 2 it would indicate that the toolpath is illegal and will then be removed.

Figure 4-12: An example ternary grid for a simple part.

To generate a new initial individual, random starting point is chosen. The next point will

then be randomly chosen from the nearest neighbours matrix for that point. This process

then repeats for all subsequent points while checking to make sure a point has not already

been chosen. If all of the nearest neighbours have already been used for a point then a random

point will be chosen for the next point ensuring that it is not an illegal move. If no legal

moves remain for a certain point then the individual is scrapped and the process is restarted

until a full legal path has been generated.

It is crucial that enough variation exists between the initial solutions so that there is a

better chance of obtaining the optimal genetic information. Each gene contains a point in

the toolpath and each individual will contain all of the possible points in its set of genes.

Therefore it is not the genes itself that require the variation as is the case in most genetic

algorithms but the order of consecutive genes that need to vary. The connection between

two genes or points is called an edge, in the same way that two connected vertices create

an edge. So to increase the variation within the initial population, the number of duplicate

85

www.EngineeringBooksPdf.com

edges within that population need to be as low as possible. This can be done by analysing

the similarity between a new individual and the individuals already present in the initial

population.

To analyse the similarity between two individuals, a list of the edges present in the

new individual needs to be made and compared to the list of edges in the already existing

population. If an individual contains more than 20% of the edges contained within another

individual then it will be replaced by a new individual.

The population size of the genetic algorithm is a complex variable to establish. If the

population size is too small, there will not be enough genetic information for the algorithm

to work with and can lead to a great quantity of duplicate edges in the population. This

increases the probability of early convergence in the optimisation and can result in non-

optimal solutions being generated as the final toolpath. However having fewer individuals in

the population decreases the computational effort required to generate each new population.

A population size of 25 was chosen for the genetic algorithm which produced a good

balance between the algorithm’s convergence rate and quality of generated toolpaths. Higher

numbers of population were tested which did not result in better toolpaths being generated

and as can be seen from Figure 4-14 a population of 25 was the lowest population possible

without compromising on solution quality.

4.3.3 Genetic Algorithm Operators

Once the genetic algorithm has been set up with all of the parameters and an initial popula-

tion, the algorithm now enters the main loop of the program. The program loops through all

of algorithms operators until an end clause is satisfied. Ordinarily a genetic algorithm will

continue optimising the population until a solution has been found which meets a certain

requirement. For example, a toolpath which has a path length that is less than x. This

is possible with a problem where the solution is known but the variables are not. However

with generating toolpaths, it is not known what the length of an optimal toolpath will be

for a feature. For this reason, the genetic algorithm will continue looping until a number

86

www.EngineeringBooksPdf.com

Figure 4-13: Initialisation process of an individual in the population

87

www.EngineeringBooksPdf.com

Figure 4-14: Effect of Population Size on Fitness for Up to 5 Million Generations.

of generations have been generated without an improvement. After testing the genetic al-

gorithm it was decided to use 1000 generations without any improvement to the toolpath as

the ending clause to the optimisation loop as this was shown to be sufficient to conclude no

further improvements would ensue.

(i) Selection

The first step of the genetic algorithm after initialisation is to select two individuals to create

a new individual from. Three types of selection operators were identified from the literature

and tested in the genetic algorithm.

To test the performance of the three selection operators mentioned above, the genetic

algorithm went through a Monte Carlo analysis with each of the three operators. A Monte

Carlo analysis was performed to determine the number of improved individuals from two

parent individuals that were chosen using the various selection operators. All the other

operators of the genetic algorithm were kept constant and only the selection operator was

changed. Each Monte Carlo analysis consisted of 1100 runs of the genetic algorithm. The

error of the Monte Carlo analysis can be found by using the following formula:

88

www.EngineeringBooksPdf.com

E =
z × σ√
N

(4.11)

Where z is the confidence level, σ is the standard deviation and N is the number of

runs in the Monte Carlo analysis. The confidence level that was used in the tests was 99%

which corresponds to a z value of 3. The number of runs was 1100 and the highest standard

deviation of the three sets.

The first strategy that was tested was a random selection of two individuals from the pop-

ulation without any selection criteria. This led to a very high percentage of new individuals

being generated that did not provide an improved solution to the current highest ranking

individual. From that conclusion it was decided to introduce some logic into the selection

operator and use a rank selection operator. The population was ranked and ordered accord-

ing to their fitness scores. The probability of each individual being selected was reduced by

a constant the further the algorithm progressed down the ranked population. This method

provided much better results at generating improved individuals. However there was still the

possibility of there being a high amount of poor performing individuals in the population

and the selection operator selecting these individuals. Therefore to reduce the chances of

the selection operator selecting poor performing individuals, a fitness proportionate selection

operator (also known as roulette wheel selection) was implemented. This method had the

highest number of improved individuals being generated from the selected individuals. The

results of the Monte Carlo tests can be seen in Figure 4-15. The fitness weighted selection

operator outperformed the other selection operators and was therefore chosen as the final

selection operator for the genetic algorithm.

The first step in the fitness proportionate selection operator is to sort the population

from the highest ranking individual to the lowest. The total fitness of the population is then

calculated. The probability of each individual being selected is then calculated using Formula

4.12.

89

www.EngineeringBooksPdf.com

Figure 4-15: Box plot showing effectiveness of various selection operators

pi =
fi∑N
j=1 fj

(4.12)

Where fi is the fitness of individual i in the population and N is the total number of

individuals. The selection bounds for each individual will be cumulative weightings of the

individuals ranked above it and the cumulative weightings including the current weighting.

The algorithm then generates a random number between 0 and 1 to select one of the indi-

viduals in the population. It can therefore be seen that using this method, individuals with

similar fitnesses will have similar probabilities of being selected.

Once the first individual is selected, it is removed from the selection pool and the selection

algorithm is repeated to obtain the second individual. The two selected individuals are then

analysed to assess the similarity between the two toolpaths in the same manner as was done

in the population initialisation. If the two individuals are too similar, the secondly chosen

individual is discarded and a new second individual is selected.

90

www.EngineeringBooksPdf.com

(ii) Crossover

To generate a new individual, the two parent individuals that were chosen in the selection

stage will be combined. Unlike regular genetic algorithms, an order based genetic algorithm

is very dependent on the order of the chromosomes in an individual. Therefore it is important

to preserve as much of the genetic order of each parent as possible. It is the order of the

genes that define the individuals path, therefore a higher percentage of new individuals will

be generated with a lower fitness if too much of the order is lost. There are a large number

of crossover operators that have been developed to efficiently mix the genetic information of

the two parent individuals as can be seen in Chapter 3 Section 3.6.2.

The performance of any crossover operator is very dependent on the problem that the

genetic algorithm is trying to solve. However it is impossible within the time frame of this re-

seach to test all the crossover operators and find the best performing operator for the toolpath

generation problem. Therefore it was decided to find the top three performing crossover op-

erators for genetic algorithms solving the travelling salesman problem. From the literature it

was found that the three best performing crossover operators were the Edge Recombination

Crossover(ERX), Partially Mapped Crossover(PMX), and the Order Crossover(OX).

The ERX operator focuses on preserving the edge information contained within the parent

individuals. The edge information is analysed before crossover and used in the individual

creation stage. The amount of crossover of each parent is randomly decided with each new

gene. The ERX operator avoids generating illegal individuals by choosing one edge at a time

and checking for illegal edges. The probability of a gene being used from one of the two

parents is 50%. Therefore the new individual is created with half of the edges of each parent.

This is a good method for equally crossing over two chromosomes and preserving the edges of

both but can lead to issues with the overall order of the chromosome. This is because there

is a high chance of alternating parent edges in the new individual. This is less of an issue if

the two parent individuals are similar but is an issue if the two parent individuals are very

different genetically. Because of this, the ERX crossover is more efficient towards the end of

the genetic algorithm as it approaches convergence.

91

www.EngineeringBooksPdf.com

The PMX operator focuses on preserving the order within the parent chromosomes. This

is done by copying one of the parent chromosomes and replacing a section of it with a length

of the other parent’s chromosome. This method can lead to illegal individuals and requires

a second stage to remove any illegal edges in the chromosome. As the algorithm removes

any illegal edges it also replaces a number of the edges that were present in the parent

chromosomes. This process may result in a slight loss of parent edges but not as much as

using the ERX operator.

The OX operator functions in a similar method to the PMX operator but differ in the

way that the copied parent chromosome receives the donated genes from the other parent.

The equivalent genes being donated are first removed from the copied chromosome and then

shifted to remove these gaps to make room for the donor genes. This operator results in a

slightly lower gene order retention when compared to the PMX operator.

To determine which of the three crossover operators will work best in the genetic algorithm

for generating machining toolpaths, each of the three operators were tested in the genetic

algorithm. Due to the modular nature of the genetic algorithm, it is possible to keep all of

the other modules of the genetic algorithm constant and only vary the crossover operator. A

Monte Carlo experiment was performed on each operator to identify the full effects on the

genetic algorithm of each operator at various problem complexities and number of generations.

When generating a toolpath for complex feature shapes it is very difficult to identify

whether the genetic algorithm has reached a global or local maximum. Therefore it would

only be possible to determine the performance of the various operators relative to each other.

A better method is to test the performance of the crossover operators using the Monte Carlo

method on a square pocket of varying size. It is very easy to calculate the global optimal tool

path for a uniform square grid. Using this feature it is possible to see how well the genetic

algorithm performs with respect to the global optimum and not relative to one another.

Another reason for using square pockets of varying sizes for the Monte Carlo experiments is

to ensure that the only variable being altered is the number of points in the problem without

any change in the complexity of the feature. The genetic algorithm might behave differently

92

www.EngineeringBooksPdf.com

between a perfectly square pocket and a slightly rectangular pocket.

The modified travelling salesman problem that the genetic algorithm is solving becomes

factorially more difficult to solve with increased number of points. Therefore it is important

to identify the maximum number of points to be used that will be solved in a timely manner

and still represents a meaningful challenge for the genetic algorithm. To obtain a statistic-

ally significant result, the genetic algorithm will be run 10000 times for each Monte Carlo

experiment.

The genetic algorithm was first tested with each crossover operator on a problem with

the maximum number of points to determine how many generations the genetic algorithm

should perform in the Monte Carlo experiment. Any simpler problem will only require an

equal number of generations or fewer.

Figure 4-16: Box plot showing effectiveness of various crossover operators

The results of the Monte Carlo experiment for the three crossover operators can be seen

in Figure 4-16. The ERX and PMX performed similarly in generating improved individuals

when compared to the OX operator. However, the PMX operator is not as computationally

intensive as the ERX operator. Therefore the PMX operator was chosen as the crossover

operator to be used in the genetic algorithm due to it being much quicker to generate the

93

www.EngineeringBooksPdf.com

new individuals while still maintaining a similar performance to the ERX operator.

Now that the crossover operator has been selected for the genetic algorithm, it needs to

be adapted slightly to solve the problem of toolpath generation. The PMX operator has

been designed in such a way to retain genetic order and to avoid duplicate genes but does

not take the feature of the part into account. Therefore it is still possible to generate paths

that cross a feature boundary and would result in an illegal toolpath. To avoid this an extra

check has to be performed for each new edge in the new individual to make sure that no

subpath crosses a boundary line. This can be done fairly easily by comparing each edge to

the distance matrix calculated at the initialisation of the genetic algorithm. This matrix also

contains information on whether an edge is illegal or not. Once this has been done, it can

be certain that the newly created individual will have a legal toolpath containing genetic

information from both parent individuals.

(iii) Mutation

To ensure the genetic algorithm converges on an optimal solution, it is important to keep the

available genes in the gene pool as diverse as possible. One way to do this is to insert new gene

combinations into the gene pool by adding a mutation function into the genetic algorithm.

As the algorithm is dealing with an ordered chromosome, mutating a gene value to a random

number can cause a point to be visited twice and another point not at all. To solve this issue

with ordered chromosomes, a special set of mutation operators were developed as can be

seen in Section 3.6.2 of Chapter 3. To prevent illegal paths, the ordered mutation operators

change the order of the genes randomly instead of the individual genes. This ensures that all

points are still visited and no points are visited more than once.

From the literature it was found that the best performing mutation operators for an

ordered genetic algorithm were the Exchange Mutation and Inversion Mutation operators.

The exchange mutation operator works by randomly selecting a first gene and then selects a

second gene in the set of points randomly. These two genes will then switch positions in the

chromosome. This can result in four new edges being created or two new edges if the genes

94

www.EngineeringBooksPdf.com

were already located next to each other. The exchange mutation operator is very simple and

preserves almost all of the order in the chromosome.

The inversion mutation operator uses a different method to alter the chromosome. Similar

to the exchange mutation operator, two genes are chosen at random but instead of switching

the two gene positions, all of the genes between the two selected genes are reversed in terms of

their order. This method only creates two new edges in the chromosome while still retaining

most of the order of the genes.

Both of these mutation operators work well in introducing new genetic edges into the

chromosome, however in the problem set of generating toolpaths it is possible for both of

them two produce illegal toolpaths whereby the toolpath crosses a feature boundary. This

can be overcome by performing a check after mutation to assess whether any new edges cross

any boundaries.

To avoid mutations of the chromosome resulting in an illegal path, a new method of mutat-

ing the current gene to one of the nearest neighbours of the previous gene was developed[163].

This method is a hybrid of the two previously discussed mutation operators with added lo-

gic to improve the effectiveness of the mutation operator. This method combines both the

exchange and inversion mutation operators by switching two gene positions and inverting all

the genes between the two chosen genes. The first gene is selected at random and the second

gene is selected from a set of the nearest neighbours of the previous gene. The set of nearest

neighbours includes the nearest N points to the gene selected for mutation and excludes any

points that would result in an illegal edge. The nearest neighbour array is created in the

initialisation of the genetic algorithm so that the calculation for the nearest neighbours to a

given point is only performed once. This reduces the computational effort required by the

mutation operator.

In the toolpath generation problem, if the objective function is path shortness, then

the optimal subpath from one point to another will be two points with minimal distance

between them. If the objective function is path straightness, then the optimal subsequent

point to any given point will be a point in one of four directions to the original point. The

95

www.EngineeringBooksPdf.com

nearest neighbour (NN) method increases the probability of the mutation being successful

by reducing the scope of the available genes that the selected gene can switch positions with.

The following calculation verifies the benefit of using this method.

Probability of Successful Mutation without NN Method =
1

(XY 2 −XY)
(4.13)

where X = points along X axis and Y = points along Y axis.

Probability of Successful Mutation With NN Method =
1

NXY
(4.14)

where X = points along X axis, Y = points along Y axis and N = number of nearest

neighbours. Therefore there is an (XY−1)
N increase in probability of having a successful muta-

tion when using the nearest neighbour method.

The sequence of figures from Figure 4-17a to Figure 4-17d illustrates the nearest neigh-

bour mutation method. Figure 4-17a is an example of a toolpath which is not completely

optimal. In Figure 4-17b the gene targeted for mutation is highlighted along with its nearest

neighbours. The genetic algorithm will then select one of these nearest neighbours at ran-

dom to become the next point in the toolpath order. In Figure 4-17c the optimal nearest

neighbour is selected and its position is then switched with the original gene to ensure order

is kept in the chromosome. The result of the mutation can be seen in Figure 4-17d where the

two switched genes are highlighted. The toolpath is now of optimal length and direction.

The three mutation operators were tested using the same Monte Carlo method as was

used in testing the various crossover operators. All of the other operators and variables

were kept constant and only the mutation operator changed between tests. The tests were

designed to verify which operator produced the most optimal results and also the efficiency

of each operator by looking at how many generations were required to reach convergence in

the genetic algorithm.

From the Monte Carlo experiment results in Figure 4-18 it was found that the toolpaths

96

www.EngineeringBooksPdf.com

(a) Non-optimal Toolpath. (b) First gene location with nearest neighbours.

(c) Nearest neighbour selected. (d) Completed gene mutation.

Figure 4-17: Example mutation using the nearest neighbours operator.

Figure 4-18: Box plot showing effectiveness of various mutation operators

97

www.EngineeringBooksPdf.com

adjusted by the nearest neighbours mutation operator were more effective at producing an

improvement in the individual than the ones produced by the other mutation operators.

Therefore it was decided to use the nearest neighbours mutation operator in the final design

of the mutation module for the genetic algorithm.

(iv) Fitness Function

The fitness function is the most important stage of the genetic algorithm. It directs the flow

of optimisation towards one or more specified goals. The objective goal can be set up as a

minimisation function or a maximisation function. Secondary objectives can be included in

the fitness function by adding a penalising or rewarding function to the fitness of an individual.

It is important to keep the objective function simple as adding multiple variables and various

rewarding/penalising functions results in a complex task of balancing the weighting of each

objective function. As the fitness function module of the genetic algorithm is very complex

and the problem of toolpath generation consists of various objective functions it was decided

to discuss this topic in further detail in the following section.

4.4 Optimisation of the Toolpath

This section will discuss the various objective functions that were chosen and implemented

into the fitness function for the genetic algorithm. There are a number of different qualit-

ies a CNC machining toolpath can possess. To demonstrate the capabilities of the genetic

algorithm it was decided to investigate three different qualities of a machining toolpath and

enable the genetic algorithm to easily switch between generating a toolpath with each of the

three different qualities. The three selected qualities to be investigated for the research were

the path length, straightness of the path and the average cutter engagement of the path. The

mathematical models of these three objective functions were discussed in Chapter 4 Section

4.1. As some toolpaths require adherence to more than one quality, the effectiveness of a

multi-objective function was also investigated.

98

www.EngineeringBooksPdf.com

4.4.1 Path Length

The main objective function in solving the problem of toolpath generation for machining is

to minimise the toolpath length. If the feedrate of the machining tool is kept constant then

by reducing the toolpath length, the time taken to machine a part will also be reduced. This

results in an increased production rate and increased cost efficiency of manufacturing a part.

This is under the assumption that all other machining variables are kept constant.

The total toolpath length is calculated by summing all of the individual subpath lengths

of the edges contained within an individual. This is done by starting at the first gene of the

chromosome and calculating the linear distance between the first gene and the subsequent

gene. This process is iterated through the chromosome until all of the edge distances have

been calculated and added to the total distance.

In a standard genetic algorithm this process would be repeated for each individual in

each generation. This requires a lot of computational effort and in many cases a lot of the

distance calculations are repeated many times. To overcome this and increase the efficiency of

the algorithm, a distance array is used which contains all of the distance values for all of the

possible edges for a given set of points. This requires the distance of each edge to be calculated

only once. To further increase the efficiency of the algorithm, the genetic algorithm tracks

changes in the chromosome during crossover and mutation and only updates the distances of

edges that are altered. The fitness function now adheres to the path length objective function

with the minimal amount of computational effort.

The drawback of performing the fitness function after the crossover module and mutation

module is that the fitness function itself becomes less modular. This is not an issue if there

is only one objective function, however if there is more than one objective function to choose

from then it becomes more complicated to switch between the various objectives. To keep

the fitness function modular with the more efficient computational method the crossover and

mutation operators refer to the fitness function module with the information of altered edges

to update the fitness of the individual.

Figure 4-19 illustrates how the fitness function is kept modular with the chromosome

99

www.EngineeringBooksPdf.com

Figure 4-19: Modular fitness function with edge change tracking.

change tracking. The information of altered edges (red dotted lines) in the chromosome is

fed into the fitness function for objective functions that only require this information. Any

other objective functions will then be run after that if required.

The fitness function for the path length objective is calculated using Equation 4.15.

Fitness =
1∑n

i=1Xi,jDi,j
− 1∑n

i=1X
′
i,jDi,j

(4.15)

Where X is the set of new edges in the individual and X
′

is the set of old edges that were

replaced through crossover and mutation. If the individual belongs to the first generation of

individuals then the old set of edges will be empty and the new set will contain all of the

edges in the individual. By using this fitness function, a toolpath can be generated which

will find the shortest path through a set of points, as can be seen in Figure 4-20.

4.4.2 Path Straightness

The second toolpath characteristic to be considered to be used in an objective function

is the overall straightness of the toolpath. As discussed in Chapter 4, sharp turns in a

100

www.EngineeringBooksPdf.com

Figure 4-20: An example generated path with length optimisation.

toolpath can produce kinematic errors which can lead to errors in accuracy of the features of

a machined part. Therefore it is important to reduce the number of sharp turns in a toolpath

by developing an objective function which quantifies and minimises the sharpness of turns.

There are two ways in which the straightness of a path can be evaluated on. The first

method is by counting the number of turns that occur throughout a toolpath. This is a

discrete measurement as any change in direction of a subpath with respect to the previous

subpath will count as a turn. The second method of measuring path straightness is to measure

the change in angle of direction between each subsequent subpath. The total turn angle of the

toolpath can then be obtained by summing the mod of all of the individual subpath angles.

Each method of calculating path straightness produces an optimal toolpath but each

one follows a different machining strategy. Using the turn based approach to straightness

calculation, a toolpath is generated which follows the bidirectional machining strategy. This

is due to the fact that the objective function drives the toolpath to have long straight sections

with sharp turns on the ends. The straight sections will always develop along the direction of

the longest dimension of the feature as this will give the individual the best fitness. Using the

turn based objective function the direction of the straight sections can change if necessary,

for example the feature in Figure 4-21 requires a vertical direction of machining through the

narrow area on the left and a horizontal direction for the rest of the feature.

An objective function which greatly favours consecutive subpaths in the same direction

was developed to help drive the evolution of the toolpath towards the bidirectional strategy.

101

www.EngineeringBooksPdf.com

Figure 4-21: An example of how the direction of machining can change around a feature.

After testing a various methods of rewarding consecutive same direction subpaths it was found

that rewarding each additional subpath exponentially outperformed the other methods. This

is due to the fact that the objective function gives priority to extending the length of the

longest subpaths already in the individual. Therefore extending a 5-point straight line to a

6-point line increases the fitness by 11 and reducing a 4-point straight line to a 3-point line

reduces the fitness by 7 which results in an overall increase in fitness.

To implement this optimisation method into the fitness function, a series of logical steps

were developed in the fitness function to produce the required toolpath with the bidirectional

strategy. Figure 4-22 illustrates the logical steps the program undergoes to achieve this. The

fitness function begins by iterating through the toolpath until two consecutive subpaths have

the same direction. The program will then continue iterating through the points until a

change of direction occurs and then will add the square of the number of consecutive points

that had the same direction to the fitness. This process is continued until it has iterated

through all of the toolpath’s points.

The objective function can now generate a bidirectional toolpath for a given set of points.

102

www.EngineeringBooksPdf.com

Figure 4-22: Turn based straightness optimisation part of the fitness function.

An example of a toolpath generated by using the turn based objective function for a square

pocket can be seen in Figure 4-23.

Figure 4-23: An example generated path with turn based straightness optimisation.

The angle method of calculating the path straightness results in a toolpath being gener-

ated that follows the spiral machining strategy. This is because the spiral strategy follows

the contour of the feature towards the centre or vice versa and therefore naturally has the

minimum amount of turning angle over the course of the toolpath. The objective function to

generate the spiral type of toolpath mentioned will be a minimisation of the sum of the mod

of the angular difference between consecutive subpaths along the toolpath. This objective

103

www.EngineeringBooksPdf.com

function can be seen in Equation 4.16.

min
n∑

i=1

Xi,j |θ| (4.16)

Figure 4-24 is an example of two consecutive subpath with θ1 and θ2 representing the

individual angles of each subpath. The position of the paths can be rearranged as shown in

Figure 4-24 to visually represent the total angle change between two subpaths. The angular

difference can then be calculated by subtracting θ1 from θ2. The atan2 programming function

was used to calculate each value of θ. The atan2 function was chosen as opposed to calculating

the dot product between the two paths as it has a higher accuracy when performing floating

point arithmetic. The atan2 function also avoids increasing errors as two subpaths approach

being parallel or perpendicular to each other which occurs very frequently in machining

toolpaths. The atan2 function is defined in Equation 4.17.

Figure 4-24: Angle of each subpath.

Figure 4-25: Angle difference between two subpaths.

104

www.EngineeringBooksPdf.com

atan2(y, x) =

arctan(
y

x
) if x > 0,

arctan(
y

x
) + π if x < 0 and y ≥ 0,

arctan(
y

x
)− π if x < 0 and y < 0,

+
π

2
if x = 0 and y > 0,

−π
2

if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(4.17)

As seen in Equation 4.17, the result is undefined when x = 0 and y = 0, but this is avoided

in the TSP problem there is no legal subpath that would begin and end in the same position.

The range of results produced by the atan2 function is between −π and π. The total angle

change between the two subpaths (denoted by θT) can now be calculated by inputting the x

and y coordinates into the atan2 function as described in Equation 4.18.

θT = atan2(A,B)− atan2(C,D) (4.18)

where A = yn − yn−1

B = xn − xn−1

C = yn−1 − yn−2

D = xn−1 − xn−2

The result from Equation 4.18 will be between -2π and 2π. The angle given by Equation

4.18 can either correspond to the major or minor arc subtended between the two subpaths,

however only the minor arc angle is required for the objective function. Therefore Equation

4.18 needs to be adjusted to only produce results in the −π to π ratio. This adjustment can

be seen in Equation 4.19 which only calculates the angle of the minor arc for θT .

105

www.EngineeringBooksPdf.com

θT =

θ2 − θ1 − 2π if θ2 − θ1 > π

θ2 − θ1 + 2π if θ2 − θ1 < −π

θ2 − θ1 if π ≤ θ2 − θ1 ≤ π

(4.19)

The objective function minimises the sum of all the subpath angles, therefore it is im-

portant to obtain the mod of the individual subpath angles. This is because the objective

function relies on the magnitude of the angles instead of the direction.

Now that the angles can be properly identified, the objective function iterates through

all of the grid points whilst summing all of the angles calculated using Equation 4.19. The

fitness of the species is then defined by Equation 4.20.

Fitness =
1∑n

i=1Xi,j |θT |
(4.20)

By minimising the objective function, a spiral toolpath can now be generated for a set

of grid points. An example toolpath generated by using the angular straightness objective

function for a square pocket can be seen in Figure 4-26.

Figure 4-26: An example toolpath generated using the angular objective function.

106

www.EngineeringBooksPdf.com

4.4.3 Tool Engagement

The final toolpath characteristic considered to be used as an objective function is the en-

gagement of the tool throughout the toolpath. The tool engagement influences the formation

of chips and thus affects the surface quality of the part. A high value of tool engagement

throughout the toolpath will result in a higher value of material removal which will reduce

the overall machining time. However the higher the tool engagement the quicker the tool will

wear.

Due to the advantages and disadvantages of having a high or low tool engagement, the

tool engagement will be set at a target value that should be kept consistent throughout the

toolpath. This target value will be a balance between the various effects the tool engagement

produce. Therefore the objective function will not be an overall minimisation/maximisation

but a minimisation of the deviation from this target value.

To calculate the consistency of the tool engagement over the full toolpath, the amount

of material engaged the tool at any point throughout the toolpath needs to be calculated

first. To do this the area of the tool and material need to be discretised. Ordinarily the

tool engagement calculation considers the area of material engaged with the tool as seen in

Figure 4-27, however as the cut depth is kept constant throughout each layer of machining

the calculation can be simplified to just the amount of the tool’s circumference engaged with

the material.

Figure 4-27: Area of tool engaged with the material.

As the tool engagement calculation has been reduced from a 3D to a 2D environment, the

107

www.EngineeringBooksPdf.com

discretisation of the tool and material can be reduced to a two dimensional problem. The

tool engagement can be assesed by converting the layer of material into a grid of pixels where

each pixel is defined as either containing material or not. The tool is also discretised and

then rastered over the pixels to identify which pixels of material are in contact with the tool

throughout the toolpath.

The accuracy of the tool engagement calculation is dependent on the resolution of the

grid and the size of the tool. The accuracy of the calculated tool engagement increases as the

resolution of the grid increases. However increasing the resolution of the grid also increases

the computational effort required to perform the tool engagement calculations. The accuracy

of the tool engagement value can be evaluated by determining the number of pixels used

to model the circumference of the tool and then finding the ratio of one pixel to the full

circumference. Since the distance between any two neighbouring pixels can only be 1 or
√

2,

the number of pixels required to represent a circle with radius r is between
√

2πr ≤ x ≤ 2πr.

The accuracy of the tool engagement calculation is reduced with fewer points. Therefore

by using the lower bounds of pixels required to draw a pixelated circle the accuracy can be

calculated using Equation 4.21.

Accuracy =
Resolution√

2πr
(4.21)

If the radius of the tool and accuracy required are known, then Equation 4.21 can be

rearranged to give the minimum resolution of the grid necessary to achieve the required

accuracy.

The pixel grid is generated using the same method to generate the grid of points for the

feature with a few changes. The number of pixels will be dependent on the resolution which

is defined by the required accuracy of the calculation. Also instead of including or excluding

a point, the pixel will be 0 if it is outside of the feature and a 1 if it is inside of a feature.

The pixel information can be stored using two dimensional bit array.

The tool circumference is discretised into the same two dimensional environment by using

the Bresenham circle algorithm[164]. The Bresenham circle algorithm identifies all of the

108

www.EngineeringBooksPdf.com

pixels on the circumference of a circle with a given radius and centre point as seen in Figure

4-28. Therefore the tool engagement at any point of the path can be determined by the ratio

of pixels of the tool’s circumference overlapping material to the total pixels on the tool’s

circumference.

Figure 4-28: An example of a discretised circle using Bresenham’s circle algorithm.

Now that the tool engagement can be calculated for a single point in the toolpath, the

same method has to be repeated along the entire toolpath to determine the consistency of the

tool engagement. To do this, the average tool engagement along each edge of the toolpath

has to be calculated. The subpath can be discretised into the pixel grid by using Bresenham’s

line algorithm[165]. Bresenham’s line algorithm identifies which pixels are included in a linear

path between two points as illustrated by Figure 4-29

The tool circumference can now be rastered along the discretised path and the tool en-

gagement calculation can be performed for each iteration of the path. The average tool

engagement between two points can be obtained by summing all of the tool engagement val-

ues and dividing by the number of iterations in the path. The fitness function of the genetic

algorithm can now iterate through all of the points in the grid and calculate the average

tool engagement for each subpath between two points and adjust the fitness of the individual

109

www.EngineeringBooksPdf.com

according to the calculated values. The individual values of tool engagement is stored as well

as the average for each subpath to be used by the fitness function as required.

Figure 4-29: An example of a discretised path using Bresenham’s line algorithm.

For this objective function, the fitness of an individual is penalised or rewarded depending

on the value of tool engagement for each subpath. The individual is rewarded for having a

smaller deviation from the target tool engagement but penalised if the tool engagement is

greater than the target tool engagement. The fitness is penalised for tool engagement greater

than the target as high tool engagements can cause higher tool wear and damage. Although

higher tool engagement increases the material removal rate and hence increases productivity,

it can be assumed that if the tool engagement target is lower than the maximum then the

productivity is not the main priority.

To avoid tool engagement higher than the target, the penalty applied to the fitness will

increase exponentially the greater the tool engagement is from the target. The reward applied

to the fitness for having a tool engagement near the target will be the inverse of the difference

between the actual tool engagement and the target tool engagement. Therefore the objective

function can be defined as seen in Equation 4.22

110

www.EngineeringBooksPdf.com

Fitness =

n∑
1

Xi,j(A − B2) (4.22)

where A = |TEc − TEt|

B =

TEc − TEt if TEc > TEt

0 if TEc < TEt

By minimising the objective function in Equation 4.22, a toolpath can be generated for

a grid of points with the tool engagement being as close to the target as possible without

going over the target. An example toolpath generated using the tool engagement objective

function for a square pocket can be seen in Figure 4-30

Figure 4-30: An example of a generated toolpath using the tool engagement objective func-
tion.

As seen in Figure 4-30, the toolpath is only optimised for tool engagement and not length

or straightness. However Figure 4-31 illustrates the distribution of the tool engagement for

all of the subpaths seen in Figure 4-30

111

www.EngineeringBooksPdf.com

Figure 4-31: The distribution of tool engagement over the toolpath shown in Figure 4-30.

112

www.EngineeringBooksPdf.com

Chapter 5

Design of Test Cases for Validation

5.1 Introduction

This chapter will discuss the design of the test cases that will be used to validate the models

developed in this research as well as the performance of the genetic algorithm. The quality

of the solutions generated by the genetic algorithm will alongside the flexibility of the genetic

algorithm will be the taken into consideration when designing the test cases.

5.2 Developing the Test Parts

5.2.1 Test Part Inspired by Aerospace Component

To test the toolpath generation capabilities of the genetic algorithm, a test part needs to be

designed that contains a variety of features and machining operations which would commonly

be found in a manufacturing setting. An industrially inspired aerospace test part was used

by STEP Tools known as the ”fishhead”[166]. The fishhead part is an aerospace component

produced by Airbus and was designed to be machined using a 5-axis machine tool. A CAD

model of the fishhead part can be seen in Figure 5-1.

As the fishhead part contains features that can only be machined using a 5-axis machine

113

www.EngineeringBooksPdf.com

Figure 5-1: The original fishhead part.

tool, the fishhead design needs to be adapted so that features it contains are prismatic. The

simplest way to convert the fishhead part into a 2.5D design is to remove all of the sloped

feature boundaries and ensure that all the feature boundaries are perpendicular to the X-Y

plane. The adapted fishhead part can be seen in Figure 5-2 with the dimensions for the part

illustrated in Figure 5-3.

Figure 5-2: The adapted fishhead test part.

The fishhead part contains a variety of features defined by the STEP-NC standard. There

are several closed pockets, open pockets, bosses and a hole. The fishhead part requires ten

machining operations to finish the part including facing, pocket machining, contouring and

boring. Three different tools are also required to machine the various features of the part.

The feature types, required machining operations and tools used in this test case are all

commonly found in manufactured parts. Therefore it can be said that the fishhead part is a

114

www.EngineeringBooksPdf.com

Figure 5-3: The dimensions of the adapted fishhead test part.

satisfactory choice of design to test the flexibility and performance of the genetic algorithm

at generating machining toolpaths.

5.2.2 Test Part with Sloped Feature Boundary

A second test part was also designed to test the genetic algorithm’s capability of generating

machining toolpaths for non-prismatic features. As seen in Section 3, the boundary of a

feature defined in the STEP-NC format allows for a slope to be specified for the feature

boundary. Therefore one of the features contained within the fishhead part was modified to

contain a sloped boundary. The final test part can be seen in Figure 5-4.

The scallop height is set at 0.5mm which will be used by the genetic algorithm to identify

the correct cut depth for each layer. The actual scallop height generated by the genetic

algorithm will be compared to the target scallop height. This will validate the method for

generating toolpaths for features with a sloped boundary.

115

www.EngineeringBooksPdf.com

Figure 5-4: The test part containing a feature with a sloped boundary.

5.3 Genetic Algorithm Performance

A set of tests need to be designed to validate the objective functions developed for the genetic

algorithm and analyse their performance. As discussed in Section 3.10, the quality of the

solutions generated by the genetic algorithm need to be compared to currently used methods

of generated toolpaths for the same part as well as the globally optimal solution with respect

to each objective function.

5.3.1 Comparison to Established Methods

To compare the generated toolpaths from the genetic algorithm to currently used methods,

three different commonly used CAM software packages were identified and selected. The

CAM software packages that were selected are: NX developed by Seimens, HSMExpress

developed by Autodesk, and iMachining developed by SolidCam. The performance of the

genetic algorithm developed in this research will also be compared to the genetic algorithm

developed by Car in 2006 which was designed to generate a machining toolpath for rectangular

grids of varying sizes.

The same model of the fishhead test part in Figure 5-2 will be used for each CAM soft-

116

www.EngineeringBooksPdf.com

ware package. To compare the CAM generated toolpath to the genetic algorithm generated

toolpath, two types of machining strategies will be used: bidirectional(zig-zag) and spiral.

The machining parameters will be kept constant when generating the toolpath using the

various software packages. Two tools will be used to machine the part, a 40mm facemill and

a 10mm endmill. The cut depth is set to 2mm and the tool engagement set at 50%. Only

the roughing toolpaths will be generated using the CAM software packages. The generated

toolpaths will be compared on their length for both the bidirectional and spiral cases whereas

the number of turns and total turn angle will be compared for the bidirectional and spiral

cases respectively.

The study performed by Car attempted to generate toolpaths in a similar method to the

one used in this research. Therefore the performance of the genetic algorithm developed in

this study can be compared to the one developed by Car. Car described four test cases used

in the study to test the genetic algorithm that was developed to generate toolpaths. The test

cases consisted of various rectangular uniform grids with dimensions as follows:

• 10 x 10 cells

• 100 x 100 cells

• 100 x 75 cells

• 100 x 80 cells

The results published in the study contained the average time taken to obtain the gen-

erated toolpath as well as the fitness of the toolpath as a percentage of the global optimal

solution. Although this study was performed in 2006 and the hardware used to obtain the

results are outdated compared to modern technology, the processor clock rate is actually

higher than the one used in this research (3GHz vs 2.6GHz). Therefore the only meaningful

comparison between the genetic algorithm in this research and the genetic algorithm de-

veloped by Car will be between the fitness values of the generated solutions. However, the

time taken to generate the solutions for both algorithms will still be included in the results

in the following chapter.

117

www.EngineeringBooksPdf.com

5.3.2 Validating Genetic Algorithm Objective Functions

To determine the performance of the objective functions in the genetic algorithm, a set of

tests need to be designed to compare the generated results to the global optimum for each

individual objective. Three test cases were chosen from the TSPLIB database to test the

performance of the path length objective function. The QA194, XIT1083, and FI10639 TSP

problems as defined by the TSPLIB were chosen as the test cases. The three chosen TSP

problems can be seen in Figures 5-5, 5-6, 5-7.

Figure 5-5: The QA194 TSP problem with the optimal tour.

Figure 5-6: The XIT1083 TSP problem with the optimal tour.

These three TSP test cases were chosen as they all contained sets of points with an even

118

www.EngineeringBooksPdf.com

Figure 5-7: The FI10639 TSP problem with the optimal tour.

distribution. The number of points contained in each TSP was also a factor that was taken

consideration. The three test cases are used to represent a trivial, intermediate and difficult

problem for the genetic algorithm to solve. As a frame of reference, the largest set of points

for a feature on the fishhead test part contained 1096 points. The QA194 TSP contains 194

points which is a small problem in comparison. The XIT1083 TSP contains 1,083 points

which is very similar to the largest problem set for the fishhead part. The FI10630 TSP

contains 10,630 points which is roughly ten times the size of the previous TSP. The size of

this problem is far larger than would be expected to handle when looking at common ratios

for tool sizes to feature sizes.

The genetic algorithm has been developed to optimise paths for uniform grids, however

the TSPLIB does not contain any TSPs with a uniform grid. One slight adjustment has to be

made to the genetic algorithm so that the number of neighbours that are considered includes

the entire set of points for the problem instead of the 24 points that is normally considered.

This is due to the fact that a cluster of more than 24 points can be present in the TSPLIB

problems which results in some of the points in the cluster not being considered for mutation.

119

www.EngineeringBooksPdf.com

This can reduce the quality of the solutions as it leads to local optima. Altering the number

of neighbours to be considered for the mutation algorithm does not fundamentally change

the behaviour of the genetic algorithm but does increase the time required to converge on an

optimal solution.

The average path length produced by the genetic algorithm over all of the Monte Carlo

trails will be compared to the optimal path length as stated in the TSPLIB. This will be

the only metric compared between the two as the standard travelling salesman problem only

defines the length as its main optimisation objective.

The path straightness and tool engagement objective functions are unique to machining

toolpaths. Unfortunately there is no database of standard TSP problems where the global

optimum has been identified for the straightness and tool engagement objective functions.

Therefore a set of test cases need to be designed in order to validate these two objective

functions.

A set of uniform grids of increasing size were chosen to test the performance of the

path straightness and tool engagement objective functions. The optimal toolpaths for these

uniform grids will be identified by using a brute force search algorithm. These results will

then be compared to those generated by the genetic algorithm.

This set of tests was also designed to identify the effect that increasing the number of

grid points in the set has on the quality of solution generated by the genetic algorithm. This

was done by generating square grids with NxN points where N ranged from 5 to 50 points.

This produced problems ranging from 25 to 2500 points. The number of generations for the

genetic algorithm to run for was defined by the number of generations required to converge

on an optimal solution for the largest problem. It was found that 5 million generations was

required to converge on an optimal solution for a square grid of 2500 points. Therefore the

test for each problem will run for 5 million generations. The fitness of the population will

also be sampled for the generations in the set of values defined by Equation 5.1

n× 10i where {(n, i) : n ∈ N<10, i ∈ N<7} (5.1)

120

www.EngineeringBooksPdf.com

As genetic algorithms are a stochastic optimisation method, it is important to assess the

statistical variance in all of the results generated by the genetic algorithm in this research.

Therefore in the same manner as discussed in Section 4.3.3, the Monte Carlo method will be

applied when generating the results from the various tests described in this chapter. This

will ensure that the results presented in Chapter 6 are an accurate portrayal of the genetic

algorithms capabilities.

5.4 Summary

This chapter discussed the process of designing two test parts to be used in validating the

models developed in this research. The first test part is a prismatic adaptation of an aerospace

component which will be used to validate the genetic algorithms capability of handling a

variety of geometries and machining processes.

121

www.EngineeringBooksPdf.com

Chapter 6

Machining Results with

Comparison to Established

Algorithms

6.1 Introduction

This chapter will provide the results obtained from the validation and testing procedures

outlined in Chapter 5. The experimental data of each test case will be analysed in detail.

Section 6.2 analyses the performance of the developed genetic algorithm, Section 6.3 covers

the validation of the objective functions and Section 6.4 evaluates the performance of the

computational platform to current methods.

122

www.EngineeringBooksPdf.com

6.2 Genetic Algorithm Performance

The behaviour and functionality of the genetic algorithm was tested.

6.2.1 Effects of Number of Grid Points

To analyse the effect the size of the problem has on the solution quality of the generated

toolpaths, a set of tests were performed on the genetic algorithm where the number of grid

points in the problem were increased with each test. The results of these tests can be seen

in Figure 6-1.

Figure 6-1: Fitness over all generations for point sets up to 10000 points.

It can be seen from Figure 6-1 that the fitness of the initial population decreases as the

number of grid points increases. This is due to the increasing complexity of the problem as

more grid points are added. The algorithm to generate the initial solutions is a basic nearest

neighbour algorithm which performs better with fewer points in the problem.

The fitness of the generated paths after 10 million generations for point sets up to 10,000

points can be seen in Figure 6-2.

123

www.EngineeringBooksPdf.com

Figure 6-2: Fitness of generated paths for various point set sizes after 10 million generations.

It can also be seen that the number of generations required to reach convergence in the

genetic algorithm increases as the number of grid points increases. This is due to the core

part of the genetic algorithm staying constant despite the complexity of the problem. The

mutation operator switches a set of edges or reverses them, therefore increasing the number

of edges in the problem will require more generations to switch the required number of edges

to reach convergence. This will naturally also require more time to generate an optimised

toolpath for larger problems.

This is further illustrated in Figure 6-3 where the time taken to iterate through 1000

generations was tested for sets of grid points between 25 and 900 points in each set. The

orange, blue and grey lines are for the maximum, average and minimum times respectively.

The test was run 2000 times for each set of grid points. It can be seen that the time taken

to iterate through 1000 generations increases exponentially with the number of points.

6.2.2 Variation in Generated Solutions

A set of tests were performed to analyse the variation in the solutions generated by the genetic

algorithm due to it being a stochastic process. A toolpath was generated for a 100x100 grid of

124

www.EngineeringBooksPdf.com

Figure 6-3: Time taken to iterate 1000 generations for increasing number of points.

points and repeated 2000 times to identify the spread of fitness values for the final solutions

generated by the genetic algorithm. Figure 6-4 uses a histogram to illustrate this spread over

the runs performed.

The fitness of the generated solutions varied by no more than 0.58% from the average

solution quality. The spread of the fitness values followed a normal distribution with the

average solution quality having a 97.3% fitness value.

Figure 6-5 shows the spread of fitness values over the generations of a run with the average,

maximum and minimum values of fitness for each generation after 2000 runs. It can be seen

that the spread is reduced as the genetic algorithm converges on a solution. This is due to the

genetic algorithm quickly reducing the large solution space and focusing on the local/global

minimums of the solution space.

125

www.EngineeringBooksPdf.com

Figure 6-4: The distribution of quality for the generated solutions.

Figure 6-5: The spread of fitness over 3 million generations.

126

www.EngineeringBooksPdf.com

6.2.3 Scallop Height in Non-Prismatic Features

The toolpath generated by the genetic algorithm for the test case which contained a feature

with a sloped boundary can be seen in Figure 6-6.

Figure 6-6: Toolpath generated by GA for 3D pocket.

The generated toolpath was then simulated using CNC Simulator to assess the end result

of machining the workpiece with the generated toolpath. The results of the simulation can

be seen in Figure 6-7.

The computational platform was able to generate the required points for the feature at

each cut depth with the adjusted boundary at each layer. The scallop height produced by

the generated toolpath was equivalent to the scallop height specified as the input parameter

into the system as can be seen in Table 6.1.

Table 6.1: Comparison of scallop height between specified and actual values.

Specified Actual

Slope Height 0.50mm 0.48mm

127

www.EngineeringBooksPdf.com

Figure 6-7: 3D Model of machined pocket with sloped boundary.

6.3 Validation of Objective Function Models

This section will present the results obtained from the test cases designed to verify the

behaviour of the objective functions. The three objective functions tested were the path

length, path straightness and tool engagement. A set of tests were also performed to assess

the performance of the multi-objective function where all three objective functions previously

mentioned were used simultaneously.

6.3.1 Path Length

The path length objective function was tested by solving a set of three standard travelling

salesman problems obtained from TSPLIB. The global optimums have been identified for

the three problems and were compared to the solutions generated by the genetic algorithm.

Figures 6-8, 6-9 and 6-10 compare the optimal solution to the generated solution for the

QA194, XIT1083 and FI10639 problems respectively.

The actual lengths of the paths for the optimal and generated solutions for each problem

is shown in Table 6.2. The genetic algorithm was able to generate solutions to the QA194,

XIT1083 and FI10693 problems within 4%, 5% and 4% respectively.

128

www.EngineeringBooksPdf.com

(a) Optimal solution to QA194.

(b) Generated solution to QA194.

Figure 6-8: Comparison of optimal vs generated solutions to the QA194 TSP.

129

www.EngineeringBooksPdf.com

(a) Optimal solution to XIT1083.

(b) Generated solution to XIT1083.

Figure 6-9: Comparison of optimal vs generated solutions to the XIT1083 TSP.

Table 6.2: Comparison of toolpaths generated by the genetic algorithm vs. optimal paths for
three TSPs.

Length
TSP Optimal Generated Fitness

QA194 9,352 9,737 0.96
XIT1083 3,558 3,740 0.95
FI10639 520,527 540,427 0.96

130

www.EngineeringBooksPdf.com

(a) Optimal solution to FI10639.

(b) Generated solution to FI10639.

Figure 6-10: Comparison of optimal vs generated solutions to the FI10639 TSP.

131

www.EngineeringBooksPdf.com

6.3.2 Path Straightness

The two path straightness objective functions were tested by obtaining the optimal path for

a 10x10 grid and comparing the generated solutions to these paths. Both the turn based and

angular based straightness objectives were tested. Figures 6-11-6-14 show the optimal and

generated toolpaths for both objective functions.

Figure 6-11: Optimal bidirectional toolpath for 10x10 grid.

The results of the test cases can be seen in Table 6.3. Both objective functions performed

well with the bidirectional toolpaths having an average fitness within 2% and the spiral

toolpaths having an average fitness within 1% of the optimal solutions.

Table 6.3: Comparison of generated vs optimal toolpaths for bidirectional and spiral
strategies.

Straightness
TSP Optimal Generated(Average) Fitness

Bidirectional 18 turns 18.33 turns 0.98
Spiral 1620deg 1636.8deg 0.99

The toolpath generation for the bidirectional objective function produced optimal solu-

tions more often than for the spiral objective function.

132

www.EngineeringBooksPdf.com

Figure 6-12: Optimal spiral toolpath for 10x10 grid.

Figure 6-13: Generated bidirectional toolpath for 10x10 grid.

Figure 6-14: Generated spiral toolpath for 10x10 grid.

133

www.EngineeringBooksPdf.com

6.3.3 Tool Engagement

Tool engagement was tested by setting the intended tool engagement for the toolpath at

20%, 40%, 60%, 80% and 100% and then generating a toolpath for the fishhead part at each

interval of tool engagement.

The five sub-figures in Figure 6-15 illustrate the percentage of tool engagement over the

generated toolpath when the objective function is set to tool engagement values between 20%

and 100% in increments of 20%. The histogram for each tool engagement setting show that

the genetic algorithm was able to generate toolpaths where a majority of the toolpath had a

tool engagement value equal to the value the objective function was set at. There was also

a sharp drop-off in the amount of the toolpath machining at a tool engagement higher than

the value in the objective function. Each histogram also shows a slight increase at the 100%

tool engagement value which is due to the tool first entering the workpiece where 100% of

the tool will be engaged.

6.3.4 Multi-Objective

To test the performance of the multi-objective function, the multi-objective function was

used to generate a toolpath for the fishhead test part and the three components of the multi-

objective function were compared to the equivalent generated toolpath for each singular

objective. The three objectives used were the path length, straightness (bidirectional) and

tool engagement which was set to 50%. The generated toolpath using the multi-objective

function can be seen in Figure 6-16.

Table 6.4 list the various metrics included in the multi-objective function and compares

them to their respective metrics for the toolpath generated with that individual objective

function.

It can be seen from the data in Table 6.4 that the toolpaths generated using the multi-

objective function performed almost as well in each metric when compared to the same met-

ric produced with the individual objective function. The length and straightness performed

within 2.6% and 2.4% of the solutions produced by the individual objective functions re-

134

www.EngineeringBooksPdf.com

(a) Tool engagement across toolpath at 20% tool engagement.

(b) Tool engagement across toolpath at 40% tool engagement.

(c) Tool engagement across toolpath at 60% tool engagement.

(d) Tool engagement across toolpath at 80% tool engagement.

(e) Tool engagement across toolpath at 100% tool engagement.

Figure 6-15: Tool engagement across toolpaths at various levels of tool engagement.

135

www.EngineeringBooksPdf.com

Figure 6-16: The generated toolpath using the multi-objective function.

Table 6.4: Comparison of toolpath metrics between the multi-objective and single-objective
fitness functions.

Objective
Length Turns Time Taken

Length 2937 185 10s
Straightness 3615 41 10s
Engagement 3999 260 30s

Multiple 3012 42 30s

136

www.EngineeringBooksPdf.com

spectively. Figures 6-17a and 6-17b illustrate the tool engagement metrics over the generated

toolpaths for the individual and multiple objective functions respectively.

(a) Tool engagement histogram for single objective toolpath generation.

(b) Tool engagement histogram for multiple objective toolpath generation.

Figure 6-17: Comparison of single vs multi-objective tool engagement over the toolpath.

The tool engagement values for the toolpath generated using the multi-objective were

significantly better than the one’s produced by the individual objective function. This is due

to the nature of the tool engagement for a toolpath. The tool engagement for any point in

the tool path is dependent on every point in the toolpath previous to it. This makes tool

engagement a difficult objective to fully optimise as a slight change to an early portion of the

toolpath can vastly alter the tool engagement for the rest of the toolpath. It seems that the

other objectives included with the multi-objective function help optimise the tool engagement

further than it can if only the single objective is used.

137

www.EngineeringBooksPdf.com

6.4 Comparison to Currently Used Methods

In this section the fishhead test part is used to compare the performance of the genetic

algorithm to three widely used CAM packages to generate spiral and bidirectional toolpaths.

6.4.1 Toolpath for Test Parts Generated by the Developed Genetic Al-

gorithm

The following figures show the toolpaths generated using the genetic algorithm for the fish-

head part. The generated toolpath with the bidirectional machining strategy can be seen in

Figure 6-18 and the spiral toolpath can be seen in Figure 6-19.

Figure 6-18: Bidirectional toolpath for the fishhead test part generated with the GA.

6.4.2 Toolpath for Test Parts Generated by CAM Software

The following figures show example toolpaths generated by a CAM package. The example

toolpaths were generated using the FeatureCAM software package for the fishhead part. The

generated toolpath with the bidirectional machining strategy can be seen in Figure 6-20 and

the spiral toolpath can be seen in Figure 6-21.

138

www.EngineeringBooksPdf.com

Figure 6-19: Spiral toolpath for the fishhead test part generated with the GA.

Figure 6-20: Bidirectional toolpath for the fishhead test part generated with FeatureCam.

139

www.EngineeringBooksPdf.com

Figure 6-21: Spiral toolpath for the fishhead test part generated with FeatureCam.

6.4.3 Overall Comparison of GA Generated VS CAM Generated Toolpaths

The complete set of data for the generated toolpaths using the genetic algorithm and the

three CAM packages is shown in Table 6.5. Each piece of software was used to generate a

spiral and bidirectional toolpath. The total feed move distance, rapid move distance, overall

distance, number of turns and turn angle for each toolpath is listed in Table 6.5.

Table 6.5: Comparison of toolpath metrics between CAM and GA generated toolpaths for
the fishhead test part.

Length(mm) Straightness
Software Feed Move Rapid Move Total Move Turns Turn Angle

Bidirectional
GA 25,282 2,395 27,729 423 -
NX 24,950 2,285 27,235 415 -
FeatureCam 24,395 2,325 26,720 412 -
MasterCam 25,030 2,525 27,555 431 -
Spiral
GA 24,103 1,838 25,941 - 34686
NX 23,830 1,680 25,510 - 34090
FeatureCam 23,740 1,945 25,685 - 34358
MasterCam 24,010 1,795 25,805 - 35670

As can be seen in Table 6.5, the performance of the genetic algorithm was very similar to

140

www.EngineeringBooksPdf.com

the tested CAM packages. For the bidirectional toolpath, the GA performed within 3.6% of

the best performing CAM package for length and 2.6% for number of turns. For the spiral

toolpath, the GA performed within 3.1% of the best performing CAM package for length and

1.8% for total turn angle of the toolpath.

6.4.4 Comparison Against Car’s Genetic Algorithm

As discussed in Chapter 5, the genetic algorithm developed in this research will be tested

against a similar algorithm developed by Car. The results for the four test cases can be seen in

Table 6.6. It can be seen that the genetic algorithm developed in this research outperformed

the one developed by Car in all four test cases with respect to both fitness and time taken.

Table 6.6: Comparing the performance of the developed GA to Car’s.

Car’s Algorithm Current Algorithm
Points Fitness Time (sec) Fitness Time (sec)

10x10 91.31 15.00 99.91 0.52
100x100 90.78 54.85 97.34 13.71
100x75 89.39 146.33 97.52 11.23
100x80 90.71 156.00 97.43 11.90

6.5 Summary

This chapter presents all of the results obtained from the test cases outlined in Chapter

5. The behaviour of the genetic algorithm was tested and it was found that the number

of points used in the toolpath generation increased the number of generations required to

converge on an optimal solution. This also means that the time required to converge on a

solution increases. The quality of the generated solution only reduced to a minimum of 97.2%

of the optimal solution at 1000 points and did not further reduce as the number of points

increased.

Due to the stochastic nature of the genetic algorithm, the variation of the generated

solutions was tested and the spread of fitness values for the generated solutions was no

141

www.EngineeringBooksPdf.com

more than 0.58%. The spread of fitness values also decreased as the number of generations

increased.

The objective functions developed for the prototype were validated using a set of test

cases. The four objective functions all behaved as intended by producing optimal or near

optimal toolpaths for the respective objective that was being optimised. The two types of

straightness objectives were successful in producing a toolpath with a bidirectional and spiral

machining strategy. The multi-objective function generated a toolpath that contained metrics

that were very similar to the ones produced by the three individual objective functions.

The genetic algorithm was able to generate toolpaths that were very similar in perform-

ance to the three tested CAM packages with respect to the length, number of turns and turn

angle for both the bidirectional and spiral machining strategies. The genetic algorithm de-

veloped in this research also outperformed the similar algorithm produced by Car in all four

test cases with respect to the quality of solution and the time taken to generate a solution.

142

www.EngineeringBooksPdf.com

Chapter 7

Discussion

7.1 Introduction

This chapter will discuss the issues identified and considered throughout the conducted re-

search with respect to the research context and scope discussed in Chapter 1 Section 1.2.

7.2 State-of-the-art in Milling Toolpath Generation

A review of the literature on toolpath generation for CNC milling was performed in Chapter

2. A large number of techniques and algorithms were identified which generated CNC milling

toolpaths for a wide variety of feature types. This large number of techniques and lack of a

single overarching solution for toolpath generation emphasises the complexity of the toolpath

generation problem. Although the individual analytical techniques can generate toolpaths

quickly and efficiently, there is little consideration for the optimisation of the toolpath char-

acteristics.

143

www.EngineeringBooksPdf.com

7.3 State-of-the-art in Methods for Solving the Travelling Sales-

man Problem

To design a framework to solve the adapted travelling salesman problem a review of the

current methods for solving the traditional travelling salesman problem was performed in

Chapter 3 Section 3.5. Many algorithms and techniques have been developed to solve the

travelling salesman problem ranging from brute force to meta-heuristics. The review found

that meta-heuristics were the most efficient tool in producing optimal to near optimal solu-

tions to the travelling salesman problem.

7.4 A Novel Framework for Modelling Toolpath Generation

as a Travelling Salesman Problem

The framework outlined in Chapter 3 provides a novel method for generating CNC machining

toolpaths. The main concept of the framework is to have one method of generating toolpaths

that is independent of geometry and that is flexible in such a way that the generated toolpaths

adhere to a set of objectives as required by the user.

The framework consists of three main parts:

• Converting the toolpath generation problem for a given geometry into a travelling sales-

man problem that will produce a legal machining toolpath for all its possible solutions.

• Optimising the toolpath generated for the given geometry by finding more optimal

solutions to the defined travelling salesman problem.

• Defining the objective functions used in optimising the generated toolpaths.

The proposed framework is an improvement over the currently used methods in the fact

that it consolidates the necessity of maintaining a large number of distinct algorithms for

generating toolpaths based on the geometry of the feature or any machining strategy that is

144

www.EngineeringBooksPdf.com

required. Due to the core component of the framework consisting of an optimisation tech-

nique, the generated toolpaths will in theory be the best possible toolpath for the objective

that is being optimised. There is also the possibility of optimising various objectives simul-

taneously which is currently not possible with current methods.

7.4.1 Generating a TSP for a Given Geometry

It was identified in the research that a machining volume can be converted into a TSP by

discretising the volume into a set of points. The TSP that is constructed will be an adaptation

of the standard TSP due to the fact that any solution to this adapted TSP will have to be

a legal machining toolpath. Chapter 4 identified all of alterations that were made to the

standard TSP to produce machining toolpaths.

The first main adaptation is in the specific method that the volume is discretised so that

if every point is visited in the point set by a given tool, all of the required material will be

removed. The second main adaptation is the additional clauses that the TSP should adhere

to.

7.4.2 Optimising the Generated TSP

Although every possible solution to the adapted TSP will produce a viable machining toolpath,

the majority of solutions will be very inefficient at removing material. To ensure that the

generated toolpath will be efficient, an optimal or near optimal solution to the TSP will have

to found. This can be done by using any number of optimisation techniques.

7.4.3 Defining Objective Functions for Optimisation

An objective function must be defined to guide the progress of any optimisation technique.

Chapter 4 identifies four common characteristics considered when generating machining

toolpaths and analyses the process of developing the objective functions for these charac-

teristics so that they can be used in any optimisation technique.

145

www.EngineeringBooksPdf.com

7.4.4 A Computational Platform Prototype of the Novel Framework

In order to determine the capabilities of the framework discussed in the previous section,

a prototype implementation was developed in the form of a computational platform. The

development of the prototype is described in Chapter 4. The entire computational platform

was developed using Java to take advantage of the language’s object oriented structure.

The prototype is capable of generating optimised machining toolpaths given in G-Code

directly from a STEP-NC description of a part. This is done by using a STEP-NC interpreter

to obtain the part geometry information which is then discretised into a layered grid of points

to be used in the TSP. The optimisation technique developed for the prototype was a genetic

algorithm. The solutions to the TSP are stored in the genetic information of the individuals.

The genetic algorithm is allowed to progress until no further improvements are found.

The genetic algorithm proved to be an exceptional choice at maintaining the modular

structure of the framework with respect to the objective functions. The characteristic to be

optimised could be achieved by only altering the fitness function of the genetic algorithm.

This results in the only user input to generating a machining toolpath from a STEP-NC

description of the part being the specification of the objective function.

7.5 Evaluation of the Novel Framework and Computational

Platform Using Test Cases

A set of test cases were designed in Chapter 5 to assess the computational platform developed

in this research. The test cases can be split into two main categories: Identifying the beha-

viour of the optimisation technique used in the computational platform and the performance

of the computational platform with respect to currently established methods of generating

machining toolpaths.

The first set of test cases verified that the prototype implementation of the framework

developed in this research was able to create a travelling salesman problem for a number of

feature types and geometries. It was also able to produce optimal or near optimal solutions

146

www.EngineeringBooksPdf.com

to the created travelling salesman problem whilst optimising for four different individual

objective functions and a multi-objective function containing three objectives. The test cases

also demonstrated the capabilities of the framework to produce viable and optimal machining

toolpaths with varying characteristics for any type of geometry by only altering the objective

function.

The second set of test cases evaluated the performance of the developed computational

platform with respect to three widely used CAM packages (NX, FeatureCAM and Master-

CAM). One of the main differences observed from the test cases was that the length of rapid

moves was much shorter for the toolpaths generated using the genetic algorithm than for the

toolpaths generated using the CAM packages. This is due to the fact that one of the con-

ditions of solving the travelling salesman problem is that the path through the set of points

must be one continuous path. This results in the generation of toolpaths where the only

rapid moves are between the end and start of each new feature as well as cut depths. The

CAM generated toolpaths might contain rapid moves within each cut depth of an individual

feature when avoiding feature boundaries or boss boundaries.

The time taken to perform rapid moves is more often than not negligible when compared

to feed moves. Therefore the amount of time saved by reducing rapid moves is not substantial

enough to be considered beneficial to the manufacture of a part.

However the genetic algorithm did perform very well when compared to the CAM packages

with respect to the amount feed moves as well as the other two straightness characteristics

measured of the toolpaths. In some of the test cases the genetic algorithm actually outper-

formed the CAM package and in the worst performing test case still the genetic algorithm

still produced a toolpath within 3.6% of the best performing CAM software.

7.6 Limitations of the Computational Platform

The following is a list discusses the limitations of the framework proposed in this research:

• The tool used in machining any of the generated toolpaths from the framework is

147

www.EngineeringBooksPdf.com

assumed to be prismatic (e.g. an endmill) where the entire volume of material within

the radius of the tool and the cut depth is removed at each individual point. For any

tool that is not prismatic, it cannot be ensured that all of the required material will be

removed by the tool if it visits every point of the TSP produced for a feature.

• The generation of grid points for a feature only functions properly if the feature contains

a closed boundary as it would in the case of a closed pocket. For other feature types such

as an open pocket or a facing operation the feature requires conversion to an equivalent

closed pocket with slightly larger dimensions in the area containing the open boundary.

This produces toolpaths that would contain larger portions of the toolpath not engaged

with material than if the toolpath was generated using conventional methods.

• Due to the nature of the travelling salesman problem, the optimal path as well as its

length is unknown before the optimisation method begins. Therefore it is very difficult

to assess whether the solution found by any optimisation technique is a global or local

optimum. This leads to the problem of deciding when to end the optimisation process.

• Individual objectives can be combined into a multi-objective function so long as the

individual objectives are not conflicting. If two objectives are conflicting then it will be

impossible to optimise one variable whilst not reducing the optimisation for the other.

148

www.EngineeringBooksPdf.com

Chapter 8

Conclusion and Future Work

8.1 Introduction

This chapter will cover the conclusions obtained from this research along with the overall

contribution to knowledge. Potential areas in which this research could be expanded and

further investigated is covered in the final section of this chapter.

8.2 Conclusions

• Current methods of toolpath generation vary greatly depending on the geometry, ma-

chining strategy or objective being optimised to. These current methods also do not

have the capability of generating optimised toolpaths with respect to more than one

objective.

• It is possible to model toolpath generation as an adapted travelling salesman problem

by discretising the volume of material being removed through machining into a uniform

set of grid points and performing various optimisation techniques on these points.

• The travelling salesman problem is an incredibly difficult optimisation problem to solve

due to its large solution space at large number of points. It was found that meta-

149

www.EngineeringBooksPdf.com

heuristics are the current most efficient method of producing optimal and near optimal

solutions to the travelling salesman problem.

• The framework developed in this research allows for a CNC machining toolpath to

be generated from a part described in the STEP-NC format by solving an adapted

travelling salesman problem using an optimisation algorithm with a series of objective

functions particular to machining toolpaths.

• Toolpath characteristics and machining strategies can be incorporated into the gen-

erated toolpaths by adjusting the objective function that the optimisation algorithm

adheres to. This allows for a flexible algorithm which can generate a wide array of

optimised toolpaths whilst also being independent of part geometry.

• The framework allows for one or more objective functions to be optimised at once.

This enables the optimisation algorithm to generate toolpaths which are optimal with

respect to multiple objectives allowing for the generation of more complex and useful

toolpaths.

• A prototype of the framework proposed in this research has been realised in the form of a

computational platform. A genetic algorithm was chosen as the optimisation algorithm

to be used in solving the travelling salesman problem. The results of the development

was a modular, flexible system which was able to generate a machining toolpath for

a part independent of its geometry whilst maintaining the ability to switch objective

functions without altering the rest of the system.

• A test part which was designed based off of an industrially used aerospace component

was used as a test case in evaluating the prototype’s ability with respect to currently

used computational platforms in generating machining toolpaths. The prototype per-

formed within 3.6% of solutions provided by the computational platforms with respect

to path length and straightness.

• The framework proposed in this research can easily be adapted and expanded to account

for further developments in the field of CNC machining.

150

www.EngineeringBooksPdf.com

8.3 Contribution to Knowledge

The main contribution to knowledge of this research is in the novel interpretation of CNC

toolpath generation and optimisation as a travelling salesman problem and the framework

in which to achieve this. The framework allows for a flexible method in which to generate

toolpaths and optimise them with respect to one or more objectives independent of part

geometry. This allows for toolpaths to be generated for a wide array of feature types with only

one core optimisation algorithm which can be easily adapted to the needs of the individual.

The proposed computational platform can generate toolpaths for a part described using

STEP-NC in the form of G code to be used on a CNC machine. This allows parts described

in the newer machine control language STEP-NC to be used on CNC machines using the

older machine control language of G-code which is a valuable contribution to this field of

research.

8.4 Future Work

8.4.1 Including Additional Toolpath Characteristics

This research focused on the optimisation of toolpaths with respect to three toolpath char-

acteristics (length, straightness and tool engagement) as well as adhering to two types of

machining strategies (bidirectional and spiral). There are for more toolpath characteristics

and machining strategies that could be considered and included in the objective function.

The following is a list of other toolpath characteristics that could be considered:

• Cutting force

• Energy usage

• Tool wear

• Surface quality

• Thin walls

151

www.EngineeringBooksPdf.com

• Climb/Conventional milling

• Machining strategies(e.g. Contour, trochoidal)

8.4.2 5-Axis Machining

The framework developed in this research could be expanded to handle 5-axis machining

toolpaths. The current method uses a genetic algorithm that creates individuals with a

genetic sequence that corresponds to coordinate positions of the tool. In this method it is

assumed that the tool is always parallel to the Z-axis, which would be the case with traditional

3-axis machines where the tool position can only be translated in the X, Y or Z axes. For

machines that incorporate one or more rotary axes, the angle of the tool tip with respect to

the part can be adjusted.

To adapt the current framework to be utilised for 5-axis machining toolpaths, the genetic

structure of the individuals would require some adjustment. Each gene would consist of

multiple components as opposed to the current single parameter of the gene. The gene

information would be made up of a position component and two angle components to fully

describe the tool tip position and orientation at each grid point. An example of a multi-

component gene can be seen in Figure 8-1.

Figure 8-1: Comparison of single component and multi-component genes.

No additional genes would be required to describe a system in 5-axis compared to 3-axis,

only the extra components of the gene. Xi,j , θ1 and θ2 in Figure 8-1 correspond to a grid

point, angle of first rotary axis and angle of second rotary axis respectively.

The fitness function of the genetic algorithm would require a new component to calculate

the fitness of the new gene components. However the remaining modules of the genetic

152

www.EngineeringBooksPdf.com

algorithm can remain the same and still successfully create new individuals from existing

ones to obtain an optimal solution.

As with any optimisation algorithm, the more variables that are introduced into the

system, the more effort that is required to find an optimal solution. Therefore it is possible

that more efficient operators will have to be developed to efficiently reduce the now larger

solution space.

8.4.3 Additive Manufacturing Toolpaths

Another area of research that could benefit from the framework developed in this research

is that of additive manufacturing. More specifically the generation of toolpaths or laser

rastering paths used in additive manufacturing. The method of generating a process plan for

an additively manufactured part share many similarities regardless of the specific technology

being used. A typical process in producing an additive part can be described as follows:

• Obtain model of part to be manufactured.

• Decide on a build direction for material to be deposited.

• Slice model into layers of specified thickness.

• Decide on the infill density and pattern.

• Generate paths for the tool/laser to follow for each layer.

• Convert paths into machine code instructions and run the code on the machine.

• Perform any necessary post-processing on part.

Steps 3, 4 and 5 are very similar to what is required in the framework developed in

this research. With some adjustments the framework could produce toolpaths that would be

optimised to be used with an additive process instead of a subtractive one. One of the current

drawbacks of additive processes is the time required to deposit all the necessary material.

The framework from this research could potentially produce optimised paths with respect to

153

www.EngineeringBooksPdf.com

length to reduce the time taken to manufacture additive parts. Other objective functions

could be developed which are exclusive to additive manufacturing as they are identified

through ongoing research in the field.

8.4.4 Quantum Computer Toolpath Generation

Quantum computing is an exciting new area of research which could have a large potential

impact on solving optimisation problems. In classical computing, information is stored in

bits where each bit can store either the value of 1 or 0. Therefore when solving optimisation

problems, the computational algorithm has to iterate through most of the permutations of

bit values and evaluate the result of each possible solution. For most optimisation problems

there is a very large number of solution states and using the problem tackled in this research

as an example it can be seen that this is very time consuming.

In quantum computing the information is stored in ”Qubits”, which can also store a value

of 1 or 0 but unlike a regular bit it can store a superposition of both states[167]. This would

theoretically allow all of the various states of qubits to be evaluated simultaneously instead

of iteratively. Quantum computing could vastly reduce the computational effort and time

required to solve optimisation problems such as the travelling salesman problem.

Some research has already started on developing the algorithms required to solve optim-

isation problems using a quantum computer. Han developed a genetic quantum algorithm

to be used in solving combinatorial optimisation problems [168, 169]. Goswami developed a

framework for solving travelling salesman problems using quantum computing models[170].

It is still unknown whether a true quantum computer will be achievable and if so, whether

the theoretical performance advantages of solving optimisation problems will be realisable in

practice.

154

www.EngineeringBooksPdf.com

References

[1] F. Jovane, Y. Koren, and C. Boer, “Present and future of flexible automation: towards
new paradigms,” CIRP Annals-Manufacturing Technology, vol. 52, no. 2, pp. 543–560,
2003.

[2] H. A. ElMaraghy, “Flexible and reconfigurable manufacturing systems paradigms,”
International journal of flexible manufacturing systems, vol. 17, no. 4, pp. 261–276,
2005.

[3] K. Preiss and E. Kaplansky, “Automated part programming for CNC milling by ar-
tificial intelligence techniques,” Journal of Manufacturing Systems, vol. 4, no. 1, pp.
51–63, 1985.

[4] R. Licari, E. L. Valvo, and M. Piacentini, “Part program automatic check for three
axis CNC machines,” Journal of Materials Processing Technology, vol. 109, no. 3, pp.
290–293, 2001.

[5] M. Hardwick, Y. F. Zhao, F. M. Proctor, A. Nassehi, X. Xu, S. Venkatesh, D. Odendahl,
L. Xu, M. Hedlind, M. Lundgren et al., “A roadmap for step-nc-enabled interoperable
manufacturing,” The International Journal of Advanced Manufacturing Technology,
vol. 68, no. 5-8, pp. 1023–1037, 2013.

[6] ISO 14649-10:2004, Industrial automation systems and integration – Physical device
control – Data model for computerized numerical controllers – Part 10: General process
data. Geneva, Switzerland: ISO, Geneva, Switzerland.

[7] J. E. Bobrow, “NC machine tool path generation from CSG part representations,”
Computer-Aided Design, vol. 17, no. 2, pp. 69–76, 1985.

[8] A. G. Requicha, “Representations for rigid solids: Theory, methods, and systems,”
ACM Computing Surveys (CSUR), vol. 12, no. 4, pp. 437–464, 1980.

[9] A. Jacobson. CSG operations in libigl. [Online]. Available:
http://alecjacobson.com/weblog/media/cube-sphere-cylinders-csg-tree.jpg

[10] J. Zhao, Y. Ohnishi, G. Zhao, and T. Sasaki, Advances in Discontinuous Numerical
Methods and Applications in Geomechanics and Geoengineering, ser. Proceedings and
Monographs in Engineering, Water and Earth Sciences. Taylor & Francis, 2012.
[Online]. Available: http://books.google.co.uk/books?id=L-FqkNuejjUC

155

www.EngineeringBooksPdf.com

[11] I. C. Braid, “The synthesis of solids bounded by many faces,” Communications of the
ACM, vol. 18, no. 4, pp. 209–216, 1975.

[12] I. Stroud and H. Nagy, Solid Modelling and CAD Systems: How to Survive a CAD
System. Springer, 2011.

[13] V. Chandru, S. Manohar, and C. E. Prakash, “Voxel-based modeling for layered man-
ufacturing,” Computer Graphics and Applications, IEEE, vol. 15, no. 6, pp. 42–47,
1995.

[14] S. Patil and B. Ravi, “Voxel-based representation, display and thickness analysis of
intricate shapes,” in Computer Aided Design and Computer Graphics, 2005. Ninth
International Conference on. IEEE, 2005, pp. 6–pp.

[15] K. Chui, K. Yu, and T. Lee, “Direct tool-path generation from massive point input,”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 216, no. 2, pp. 199–206, 2002.

[16] A. C. Lin and H. T. Liu, “Automatic generation of NC cutter path from massive data
points,” Computer-Aided Design, vol. 30, no. 1, pp. 77–90, 1998.

[17] D. Dragomatz and S. Mann, “A classified bibliography of literature on NC milling path
generation,” Computer-Aided Design, vol. 29, no. 3, pp. 239–247, 1997.

[18] G. Elber and E. Cohen, “Toolpath generation for freeform surface models,” Computer-
Aided Design, vol. 26, no. 6, pp. 490–496, 1994.

[19] M. Held, G. Lukacs, and L. Andor, “Pocket machining based on contour-parallel tool
paths generated by means of proximity maps,” Computer-Aided Design, vol. 26, no. 3,
pp. 189–203, 1994.

[20] J. Jeong and K. Kim, “Tool path generation for machining free-form pockets using
Voronoi diagrams,” The International Journal of Advanced manufacturing Technology,
vol. 14, no. 12, pp. 876–881, 1998.

[21] H. Persson, “NC machining of arbitrarily shaped pockets,” Computer-Aided Design,
vol. 10, no. 3, pp. 169–174, 1978.

[22] H. Qiu, C. Kai, and L. Yan, “Optimal circular arc interpolation for NC tool path
generation in curve contour manufacturing,” Computer-Aided Design, vol. 29, no. 11,
pp. 751–760, 1997.

[23] M. K. Yeung and D. J. Walton, “Curve fitting with arc splines for NC toolpath gener-
ation,” Computer-Aided Design, vol. 26, no. 11, pp. 845–849, 1994.

[24] E. Arkin, M. Held, and C. Smith, “Optimization problems related to zigzag pocket
machining,” Algorithmica, vol. 26, no. 2, pp. 197–236, 2000.

[25] S. C. Park and B. K. Choi, “Tool-path planning for direction-parallel area milling,”
Computer-Aided Design, vol. 32, no. 1, pp. 17–25, 2000.

156

www.EngineeringBooksPdf.com

[26] W. Lee and Y. B. Bang, “Design and implementation of an ISO14649-compliant CNC
milling machine,” International Journal of Production Research, vol. 41, no. 13, pp.
3007–3017, 2003.

[27] S. P. Radzevich, “Conditions of proper sculptured surface machining,” Computer-Aided
Design, vol. 34, no. 10, pp. 727–740, 2002.

[28] B. K. Choi, D. H. Kim, and R. B. Jerard, “C-space approach to tool-path generation
for die and mould machining,” Computer-Aided Design, vol. 29, no. 9, pp. 657–669,
1997.

[29] K. Chui, W. Chiu, and K. Yu, “Direct 5-axis tool-path generation from point cloud
input using 3d biarc fitting,” Robotics and Computer-Integrated Manufacturing, vol. 24,
no. 2, pp. 270–286, 2008.

[30] L. Chih-Ching, “A new approach to CNC tool path generation,” Computer-Aided
Design, vol. 30, no. 8, pp. 649–655, 1998.

[31] S. Ding, M. Mannan, A. N. Poo, D. Yang, and Z. Han, “Adaptive iso-planar tool path
generation for machining of free-form surfaces,” Computer-Aided Design, vol. 35, no. 2,
pp. 141–153, 2003.

[32] H. Y. Feng and H. Li, “Constant scallop-height tool path generation for three-axis
sculptured surface machining,” Computer-Aided Design, vol. 34, no. 9, pp. 647–654,
2002.

[33] P. Wu, H. Suzuki, and K. Kase, “Three-axis NC cutter path generation for subdivision
surface with Z-map,” JSME International Journal Series C, vol. 48, no. 4, pp. 757–762,
2005.

[34] J. Zhu, T. Tanaka, and Y. Saito, “A rough cutting model generation algorithm based on
multi-resolution mesh for sculptured surface machining,” Journal of Advanced Mech-
anical Design, Systems, and Manufacturing, vol. 1, no. 5, pp. 628–639, 2007.

[35] I. Lazoglu, C. Manav, and Y. Murtezaoglu, “Tool path optimization for free form surface
machining,” CIRP Annals-Manufacturing Technology, vol. 58, no. 1, pp. 101–104, 2009.

[36] S. G. Lee, H. C. Kim, and M. Y. Yang, “Mesh-based tool path generation for constant
scallop-height machining,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 37, no. 1-2, pp. 15–22, 2008.

[37] ISO 10303-21:2002, Industrial automation systems and integration – Product data rep-
resentation and exchange – Part 21: Implementation methods: Clear text encoding of
the exchange structure. Geneva, Switzerland: ISO, Geneva, Switzerland.

[38] ISO 14649-11:2004, Industrial automation systems and integration – Physical device
control – Data model for computerized numerical controllers – Part 11: Process data
for milling. Geneva, Switzerland: ISO, Geneva, Switzerland.

157

www.EngineeringBooksPdf.com

[39] A. Lasemi, D. Xue, and P. Gu, “Recent development in CNC machining of freeform
surfaces: A state-of-the-art review,” Computer-Aided Design, vol. 42, no. 7, pp. 641–
654, 2010.

[40] S. S. Makhanov, “Adaptable geometric patterns for five-axis machining: A survey,”
The International Journal of Advanced Manufacturing Technology, vol. 47, no. 9-12,
pp. 1167–1208, 2010.

[41] Y. Takeuchi and T. Watanabe, “Generation of 5-axis control collision-free tool path and
postprocessing for NC data,” CIRP Annals-Manufacturing Technology, vol. 41, no. 1,
pp. 539–542, 1992.

[42] B. Choi, J. Park, and C. Jun, “Cutter-location data optimization in 5-axis surface
machining,” Computer-Aided Design, vol. 25, no. 6, pp. 377–386, 1993.

[43] S. X. Li and R. B. Jerard, “5-axis machining of sculptured surfaces with a flat-end
cutter,” Computer-Aided Design, vol. 26, no. 3, pp. 165–178, 1994.

[44] J. Pi, E. Red, and G. Jensen, “Grind-free tool path generation for five-axis surface
machining,” Computer Integrated Manufacturing Systems, vol. 11, no. 4, pp. 337–350,
1998.

[45] K. Morishige, Y. Takeuchi, and K. Kase, “Tool path generation using C-space for 5-axis
control machining,” Journal of manufacturing science and engineering, vol. 121, no. 1,
pp. 144–149, 1999.

[46] E. Bohez, S. S. Makhanov, and K. Sonthipermpoon, “Adaptive nonlinear tool path
optimization for five-axis machining,” International Journal of Production Research,
vol. 38, no. 17, pp. 4329–4343, 2000.

[47] C. S. Jun, K. Cha, and Y. S. Lee, “Optimizing tool orientations for 5-axis machining
by configuration-space search method,” Computer-Aided Design, vol. 35, no. 6, pp.
549–566, 2003.

[48] S. S. Makhanov and S. A. Ivanenko, “Grid generation as applied to optimize cutting
operations of the five-axis milling machine,” Applied numerical mathematics, vol. 46,
no. 3, pp. 331–351, 2003.

[49] C. Toh, “A study of the effects of cutter path strategies and orientations in milling,”
Journal of materials processing technology, vol. 152, no. 3, pp. 346–356, 2004.

[50] T. Chen, P. Ye, and J. Wang, “Local interference detection and avoidance in five-
axis NC machining of sculptured surfaces,” The International Journal of Advanced
Manufacturing Technology, vol. 25, no. 3-4, pp. 343–349, 2005.

[51] C. Tournier and E. Duc, “Iso-scallop tool path generation in 5-axis milling,” The Inter-
national Journal of Advanced Manufacturing Technology, vol. 25, no. 9-10, pp. 867–875,
2005.

[52] C. J. Lu and K. L. Ting, “Subdivision surface-based finish machining,” International
journal of production research, vol. 44, no. 12, pp. 2445–2463, 2006.

158

www.EngineeringBooksPdf.com

[53] W. Anotaipaiboon and S. S. Makhanov, “Curvilinear space-filling curves for five-axis
machining,” Computer-Aided Design, vol. 40, no. 3, pp. 350–367, 2008.

[54] S. Lavernhe, C. Tournier, and C. Lartigue, “Optimization of 5-axis high-speed ma-
chining using a surface based approach,” Computer-Aided Design, vol. 40, no. 10, pp.
1015–1023, 2008.

[55] W. He, M. Lei, and H. Bin, “Iso-parametric CNC tool path optimization based on ad-
aptive grid generation,” The International Journal of Advanced Manufacturing Tech-
nology, vol. 41, no. 5-6, pp. 538–548, 2009.

[56] F. Ren, Y. Sun, and D. Guo, “Combined reparameterization-based spiral toolpath
generation for five-axis sculptured surface machining,” The international journal of
advanced manufacturing technology, vol. 40, no. 7-8, pp. 760–768, 2009.

[57] Z. Haranud, Z. Jiang, T. Tanaka, and Y. Saito, “Optimal tool path generation method
for freeform surface machining,” in Proceedings of the 5th International Conference on
Leading Edge Manufacturing in 21st Century (LEM21), no. 09-207. The Japan Society
of Mechanical Engineers (JSME), 2009, pp. 3–8.

[58] W. Anotaipaiboon and S. S. Makhanov, “Optimal grids for five-axis machining,” Math-
ematics and Computers in Simulation, vol. 81, no. 3, pp. 636–655, 2010.

[59] A. Can and A. Ünüvar, “A novel iso-scallop tool-path generation for efficient five-axis
machining of free-form surfaces,” The International Journal of Advanced Manufacturing
Technology, vol. 51, no. 9-12, pp. 1083–1098, 2010.

[60] A. Lasemi, D. Xue, and P. Gu, “A freeform surface manufacturing approach by in-
tegration of inspection and tool path generation,” International Journal of Production
Research, vol. 50, no. 23, pp. 6709–6725, 2012.

[61] W. Anotaipaiboon and S. S. Makhanov, “Tool path generation for five-axis NC machin-
ing using adaptive space-filling curves,” International Journal of Production Research,
vol. 43, no. 8, pp. 1643–1665, 2005.

[62] E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys, The traveling salesman
problem: a guided tour of combinatorial optimization. Wiley Chichester, 1985, vol. 3.

[63] S. Lin, “Computer solutions of the traveling salesman problem,” Bell System Technical
Journal, vol. 44, no. 10, pp. 2245–2269, 1965.

[64] J. Cirasella, D. S. Johnson, L. A. McGeoch, and W. Zhang, “The asymmetric traveling
salesman problem: Algorithms, instance generators, and tests,” in Algorithm Engin-
eering and Experimentation. Springer, 2001, pp. 32–59.

[65] R. Kumar and H. Li, “On asymmetric tsp: Transformation to symmetric tsp and
performance bound.”

[66] F. Della Croce, R. Tadei, and G. Volta, “A genetic algorithm for the job shop problem,”
Computers & Operations Research, vol. 22, no. 1, pp. 15–24, 1995.

159

www.EngineeringBooksPdf.com

[67] W. J. Wang, S. S. Lu, and C. F. Hsu, “Experiments on the position control of a one-link
flexible robot arm,” Robotics and Automation, IEEE Transactions on, vol. 5, no. 3, pp.
373–377, 1989.

[68] M. Gendreau, G. Laporte, and D. Vigo, “Heuristics for the traveling salesman problem
with pickup and delivery,” Computers & Operations Research, vol. 26, no. 7, pp. 699–
714, 1999.

[69] T. Maekawa, “Computation of shortest paths on free-form parametric surfaces,” Trans-
actions of the ASME-R-Journal of Mechanical Design, vol. 118, no. 4, pp. 499–508,
1996.

[70] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem: a survey,” Op-
erations Research, vol. 16, no. 3, pp. 538–558, 1968.

[71] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: A case study
in local optimization,” Local search in combinatorial optimization, vol. 1, pp. 215–310,
1997.

[72] C. Chauhan, R. Gupta, and K. Pathak, “Survey of methods of solving tsp along with
its implementation using dynamic programming approach,” International Journal of
Computer Applications, vol. 52, no. 4, pp. 12–19, 2012.

[73] Y. Jiang, T. Weise, J. Lassig, R. Chiong, and R. Athauda, “Comparing a hybrid branch
and bound algorithm with evolutionary computation methods, local search and their
hybrids on the tsp,” in Computational Intelligence in Production and Logistics Systems
(CIPLS), 2014 IEEE Symposium on. IEEE, 2014, pp. 148–155.

[74] A. R. Saiyed, “The traveling salesman problem,” 2012.

[75] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. Rosamond, S. Saurabh, and Y. Villanger,
“Local search: Is brute-force avoidable?” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 707–719, 2012.

[76] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations
research, vol. 14, no. 4, pp. 699–719, 1966.

[77] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-salesman
problem,” Journal of the operations research society of America, vol. 2, no. 4, pp.
393–410, 1954.

[78] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm for the traveling
salesman problem,” Operations research, vol. 11, no. 6, pp. 972–989, 1963.

[79] A. H. Land and A. G. Doig, “An automatic method for solving discrete programming
problems,” in 50 Years of Integer Programming 1958-2008. Springer, 2010, pp. 105–
132.

[80] W. Zhang, “Truncated branch-and-bound: A case study on the asymmetric TSP,”
in Proc. of AAAI 1993 Spring Symposium on AI and NP-Hard Problems, 1993, pp.
160–166.

160

www.EngineeringBooksPdf.com

[81] D. Miller and J. Pekny, “Results from a parallel branch and bound algorithm for the
asymmetric traveling salesman problem,” Operations Research Letters, vol. 8, no. 3,
pp. 129–135, 1989.

[82] M. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric traveling salesman
problem by branch and cut,” Operations Research Letters, vol. 6, no. 1, pp. 1–7, 1987.

[83] J. Pearl, “Heuristics: Intelligent search strategies for computer problem solving,” 1984.

[84] P. JUDEA, “Heuristics: intelligent search strategies for computer problem solving,”
1985.

[85] R. L. Karg and G. L. Thompson, “A heuristic approach to solving travelling salesman
problems,” Management science, vol. 10, no. 2, pp. 225–248, 1964.

[86] A. Frieze, “Worst-case analysis of algorithms for travelling salesman problems,” Meth-
ods of Operations Research, vol. 32, pp. 97–112, 1979.

[87] G. u. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a number
of delivery points,” Operations research, vol. 12, no. 4, pp. 568–581, 1964.

[88] N. Christofides, “Worst-case analysis of a new heuristic for the travelling salesman
problem,” DTIC Document, Tech. Rep., 1976.

[89] D. S. Johnson and L. A. McGeoch, “Experimental analysis of heuristics for the stsp,”
in The traveling salesman problem and its variations. Springer, 2007, pp. 369–443.

[90] G. A. Croes, “A method for solving traveling-salesman problems,” Operations research,
vol. 6, no. 6, pp. 791–812, 1958.

[91] F. Bock, “An algorithm for solving travelling-salesman and related network optimiz-
ation problems,” in Operations Research, vol. 6, no. 6. INST OPERATIONS RE-
SEARCH MANAGEMENT SCIENCES 901 ELKRIDGE LANDING RD, STE 400,
LINTHICUM HTS, MD 21090-2909, 1958, pp. 897–897.

[92] J. J. Bentley, “Fast algorithms for geometric traveling salesman problems,” ORSA
Journal on computing, vol. 4, no. 4, pp. 387–411, 1992.

[93] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman
problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[94] D. Johnson, J. Bentley, L. McGeoch, and E. Rothberg, “Near-optimal solutions to very
large traveling salesman problems,” Monograph, to appear, 1987.

[95] C. H. Papadimitriou, “The complexity of the lin-kernighan heuristic for the traveling
salesman problem,” SIAM Journal on Computing, vol. 21, no. 3, pp. 450–465, 1992.

[96] K. Helsgaun, “An effective implementation of the lin–kernighan traveling salesman
heuristic,” European Journal of Operational Research, vol. 126, no. 1, pp. 106–130,
2000.

161

www.EngineeringBooksPdf.com

[97] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on metaheur-
istics for stochastic combinatorial optimization,” Natural Computing: an international
journal, vol. 8, no. 2, pp. 239–287, 2009.

[98] C. Nilsson, “Heuristics for the traveling salesman problem,” Tech. Rep.

[99] G. Renner and A. Ekárt, “Genetic algorithms in computer aided design,” Computer-
Aided Design, vol. 35, no. 8, pp. 709–726, 2003.

[100] F. Alex, “Simulation of genetic systems by automatic digital computers. i. introduc-
tion,” Aust. J. Biol. Sci, vol. 10, pp. 484–491, 1957.

[101] A. Fraser, “Simulation of genetic systems by automatic digital computers. ii: Effects of
unkage on rates under selection,” Austral. J. Biol. Sci, vol. 10, pp. 492–499, 1957.

[102] J. Holland, Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. University of Michigan Press,
1975. [Online]. Available: http://books.google.co.uk/books?id=YE5RAAAAMAAJ

[103] R. Brady, “Optimization strategies gleaned from biological evolution,” Nature, vol. 317,
no. 6040, pp. 804–806, 1985.

[104] T. Blickle and L. Thiele, “A comparison of selection schemes used in genetic al-
gorithms,” 1995.

[105] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament selection, and the
effects of noise,” Complex Systems, vol. 9, no. 3, pp. 193–212, 1995.

[106] D. E. Goldberg, “Genetic algorithms in search, optimization, and machine learning,”
1989.

[107] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution algorithms in com-
binatorial optimization,” Parallel Computing, vol. 7, no. 1, pp. 65–85, 1988.

[108] J. J. Grefenstette and J. E. Baker, “How genetic algorithms work: A critical look at
implicit parallelism,” in Proceedings of the third international conference on Genetic
algorithms. Morgan Kaufmann Publishers Inc., 1989, pp. 20–27.

[109] L. D. Whitley et al., “The genitor algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best.” in ICGA, 1989, pp. 116–123.

[110] H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on JAVA,” in Third Inter-
national Symposium on Artificial Life, and Robotics (AROB III98), 1998, pp. 283–288.

[111] V. M. Kureichick, V. V. Miagkikh, and A. P. Topchy, “Genetic algorithm for solution
of the traveling salesman problem with new features against premature convergence,”
TSURE Journal of Engineering, 1996.

[112] P. Moscato, “On genetic crossover operators for relative order preservation,” C3P Re-
port, vol. 778, 1989.

162

www.EngineeringBooksPdf.com

[113] G. Üçoluk, “Genetic algorithm solution of the TSP avoiding special crossover and muta-
tion,” Intelligent Automation & Soft Computing, vol. 8, no. 3, pp. 265–272, 2002.

[114] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, “Genetic
algorithms for the travelling salesman problem: A review of representations and oper-
ators,” Artificial Intelligence Review, vol. 13, no. 2, pp. 129–170, 1999.

[115] M. Lidd, “Traveling salesman problem domain application of a fundamentally new
approach to utilizing genetic algorithms,” Research sponsored in part by Air Force
Office of Scientific Research and Office of Naval Research, Contract F4920-90-G-0033,
1991.

[116] L. Davis, “Applying adaptive algorithms to epistatic domains,” in Proceedings of the
international joint conference on artificial intelligence, vol. 1. Los Angeles, CA, USA,
1985, pp. 161–163.

[117] G. Syswerda, “Schedule optimization using genetic algorithms,” Handbook of genetic
algorithms, pp. 332–349, 1991.

[118] K. Deep and H. Mebrahtu, “New variations of order crossover for travelling salesman
problem,” International Journal, vol. 2, 2011.

[119] D. E. Goldberg and R. Lingle Jr, “Alleles, loci, and the traveling salesman problem,”
in Proceedings of the 1st international conference on genetic algorithms. L. Erlbaum
Associates Inc., 1985, pp. 154–159.

[120] L. D. Whitley, T. Starkweather, and D. Fuquay, Scheduling problems and traveling
salesmen: The genetic edge recombination operator. Colorado State University, De-
partment of Computer Science, 1989.

[121] I. Oliver, D. Smith, and J. R. Holland, “A study of permutation crossover operators
on the traveling salesman problem,” in Proceedings of the Second International Confer-
ence on Genetic Algorithms on Genetic algorithms and their application. L. Erlbaum
Associates Inc., 1987, pp. 224–230.

[122] J. J. Grefenstette, “Incorporating problem specific knowledge into genetic algorithms,”
Genetic algorithms and simulated annealing, vol. 4, pp. 42–60, 1987.

[123] Y. Nagata, “Edge assembly crossover: A high-power genetic algorithm for the traveling
salesman problem,” in Proc. 7th ICGA, 1997, pp. 450–457.

[124] H. Mühlenbein, “Parallel genetic algorithms, population genetics and combinatorial
optimization. parallelism, learning,” Evolution, Springer-Verlag, pp. 398–406, 1989.

[125] P. Larrañaga, C. M. Kuijpers, M. Poza, and R. H. Murga, “Decomposing Bayesian
networks: triangulation of the moral graph with genetic algorithms,” Statistics and
Computing, vol. 7, no. 1, pp. 19–34, 1997.

[126] J. J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. V. Gucht, “Genetic algorithms for
the traveling salesman problem,” in Proceedings of the 1st international conference on
genetic algorithms. L. Erlbaum Associates Inc., 1985, pp. 160–168.

163

www.EngineeringBooksPdf.com

[127] K. Rani and V. Kumar, “Solving travelling salesman problem using genetic algorithm
based on heuristic crossover and mutation operator,” International Journal of Research
in Engineering and Technology, vol. 2, no. 2, pp. 27–34, 2014.

[128] O. Abdoun and J. Abouchabaka, “A comparative study of adaptive crossover operat-
ors for genetic algorithms to resolve the traveling salesman problem,” arXiv preprint
arXiv:1203.3097, 2012.

[129] H. S. Yoon and B. R. Moon, “An empirical study on the synergy of multiple crossover
operators,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp. 212–
223, 2002.

[130] J. Andre, P. Siarry, and T. Dognon, “An improvement of the standard genetic algorithm
fighting premature convergence in continuous optimization,” Advances in engineering
software, vol. 32, no. 1, pp. 49–60, 2001.

[131] Z. Michalewicz, Genetic algorithms + data structures = evolution programs. springer,
1998.

[132] W. Banzhaf, “The molecular traveling salesman,” Biological Cybernetics, vol. 64, no. 1,
pp. 7–14, 1990.

[133] D. B. Fogel, “An evolutionary approach to the traveling salesman problem,” Biological
Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

[134] D. B. Fogel and B. David, “A parallel processing approach to a multiple traveling
salesman problem using evolutionary programming.” L. Canter, Fullerton, CA,, 1990,
pp. 318–326.

[135] O. Abdoun, J. Abouchabaka, and t. Tajani, “Analyzing the performance of mutation
operators to solve the travelling salesman problem,” arXiv preprint arXiv:1203.3099,
2012.

[136] P. Merz and B. Freisleben, “Genetic local search for the TSP: New results,” in Evol-
utionary Computation, 1997., IEEE International Conference on. IEEE, 1997, pp.
159–164.

[137] B. F. Al-Dulaimi and H. A. Ali, “Enhanced traveling salesman problem solving by
genetic algorithm technique (TSPGA),” World Academy of Science, Engineering and
Technology, vol. 38, pp. 296–302, 2008.

[138] F. Liu and G. Zeng, “Study of genetic algorithm with reinforcement learning to solve
the TSP,” Expert Systems with Applications, vol. 36, no. 3, pp. 6995–7001, 2009.

[139] L. Jiao and L. Wang, “A novel genetic algorithm based on immunity,” Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 30, no. 5,
pp. 552–561, 2000.

[140] A. Gupta, P. Chandna, and P. Tandon, “Hybrid genetic algorithm for minimizing non
productive machining time during 2.5D milling,” International Journal of Engineering,
Science and Technology, vol. 3, no. 1, 2011.

164

www.EngineeringBooksPdf.com

[141] A. Uğur, “Path planning on a cuboid using genetic algorithms,” Information Sciences,
vol. 178, no. 16, pp. 3275–3287, 2008.

[142] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: An autocatalytic optimizing
process,” TR91-016, Politecnico di Milano, 1991.

[143] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of co-
operating agents,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions, vol. 26, no. 1, pp. 29–41, 1996.

[144] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem,” Evolutionary Computation, IEEE Transac-
tions on, vol. 1, no. 1, pp. 53–66, 1997.

[145] G. S. Tewolde and W. Sheng, “Robot path integration in manufacturing processes:
Genetic algorithm versus ant colony optimization,” Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, vol. 38, no. 2, pp. 278–287,
2008.

[146] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel ant colony optimiz-
ation for the traveling salesman problem,” in Ant Colony Optimization and Swarm
Intelligence. Springer, 2006, pp. 224–234.

[147] C. F. Tsai, C. W. Tsai, and C. C. Tseng, “A new hybrid heuristic approach for solving
large traveling salesman problem,” Information Sciences, vol. 166, no. 1, pp. 67–81,
2004.

[148] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[149] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Journal
of statistical physics, vol. 34, no. 5-6, pp. 975–986, 1984.

[150] D. Bookstaber, “Simulated annealing for traveling salesman problem,” 1997.

[151] M. Malek, M. Guruswamy, M. Pandya, and H. Owens, “Serial and parallel simulated
annealing and tabu search algorithms for the traveling salesman problem,” Annals of
Operations Research, vol. 21, no. 1, pp. 59–84, 1989.

[152] Z. Car, T. Mikac, and I. Veža, “Utilization of GA for optimization of tool path on a 2D
surface,” in Proceedings of 6th International Workshop on Emergent Synthesis IWES,
vol. 6, 2006, pp. 231–236.

[153] K. Weinert, J. Mehnen, and M. Stautner, “The application of multiobjective evolution-
ary algorithms to the generation of optimized tool paths for multi-axis die and mould
making,” in Intelligent Computation in Manufacturing Engineering, 4th CIRP Inter-
national Seminar on Intelligent Computation in Manufacturing Engineering, CIRP
ICME, vol. 4, 2004, pp. 406–412.

165

www.EngineeringBooksPdf.com

[154] J. Mehnen, R. Roy, P. Kersting, and T. Wagner, “ICSPEA: evolutionary five-axis
milling path optimisation,” in Proceedings of the 9th annual conference on Genetic and
evolutionary computation. ACM, 2007, pp. 2122–2128.

[155] P. Kersting and A. Zabel, “Optimizing NC-tool paths for simultaneous five-axis milling
based on multi-population multi-objective evolutionary algorithms,” Advances in En-
gineering Software, vol. 40, no. 6, pp. 452–463, 2009.

[156] L. Jiao, H. Wang, R. Shang, and F. Liu, “A co-evolutionary multi-objective optimiza-
tion algorithm based on direction vectors,” Information Sciences, 2012.

[157] D. J. Mundform, J. Schaffer, M.-J. Kim, D. Shaw, A. Thongteeraparp, and P. Supawan,
“Number of replications required in monte carlo simulation studies: a synthesis of four
studies,” Journal of Modern Applied Statistical Methods, vol. 10, no. 1, p. 4, 2011.

[158] B. Iooss and P. Lemâıtre, “A review on global sensitivity analysis methods,” in Uncer-
tainty Management in Simulation-Optimization of Complex Systems. Springer, 2015,
pp. 101–122.

[159] G. Reinelt, “Tspliba traveling salesman problem library,” ORSA journal on computing,
vol. 3, no. 4, pp. 376–384, 1991.

[160] R. L. Liu, C. R. Zhang, A. Nassehi, and S. Newman, “A step-nc programming system
for prismatic parts,” in Materials Science Forum, vol. 532. Trans Tech Publ, 2006,
pp. 1108–1111.

[161] F. Feito, J. C. Torres, and A. Urena, “Orientation, simplicity, and inclusion test for
planar polygons,” Computers & Graphics, vol. 19, no. 4, pp. 595–600, 1995.

[162] G. Taylor, “Point in polygon test,” Survey Review, vol. 32, no. 254, pp. 479–484, 1994.

[163] W. P. Essink, A. Nassehi, and S. T. Newman, “Toolpath generation for CNC milled
parts using genetic algorithms,” in Enabling Manufacturing Competitiveness and Eco-
nomic Sustainability. Springer, 2014, pp. 189–193.

[164] J. Bresenham, “A linear algorithm for incremental digital display of circular arcs,”
Communications of the ACM, vol. 20, no. 2, pp. 100–106, 1977.

[165] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems
journal, vol. 4, no. 1, pp. 25–30, 1965.

[166] “Fishhead - step tools, inc.” steptools.com/products/stepncmachine/samples/fishhead/,
accessed: 2014-03-10.

[167] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge university press, 2010.

[168] K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its application to combin-
atorial optimization problem,” in Evolutionary Computation, 2000. Proceedings of the
2000 Congress on, vol. 2. IEEE, 2000, pp. 1354–1360.

166

www.EngineeringBooksPdf.com

[169] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization,” IEEE transactions on evolutionary computation, vol. 6,
no. 6, pp. 580–593, 2002.

[170] D. Goswami, H. Karnick, P. Jain, and H. K. Maji, “Towards efficiently solving quantum
traveling salesman problem,” arXiv preprint quant-ph/0411013, 2004.

167

www.EngineeringBooksPdf.com

Chapter 9

Appendix

9.1 STEP-NC Programme of Test Parts

9.1.1 Fishhead Test Part

ISO−10303−21
HEADER;
FILE DESCRIPTION(
(’ Fishhead Test Part ’) ,
’ 2 ; 1 ’) ;
FILE NAME(
’TEST.STP’ ,
(’Wesley Essink ’ , ’ Xianzhi Zhang ’ , ’ Aydin Nassehi ’) ,
(’ Un ive r s i ty o f Bath ’) ,
’ ’ ,
’STEPMAN’ ,
’ ’) ;
FILE SCHEMA((’COMBINED Schema ’)) ;
ENDSEC;
DATA;
#1=PROJECT(’”RECOGNISED ISO 14649 PART 21 FILE FROM G&M CODES” ’ ,#2 ,(#3) ,$, $, $) ;
#2=WORKPLAN(’”MAIN WORKPLAN”’ ,(#4 ,#5 ,#6 ,#7 ,#8 ,#9 ,#10 ,#11 ,#12 ,#13) ,$,#14 , $) ;
#3=WORKPIECE(’”WORKPIECE135. 0X185 . 0X40 . 0” ’ , $, $, $, $,#24 , ()) ;
#4=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE1”” ’ ,#15 ,#16 ,#17 ,$) ;
#5=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE2”” ’ ,#15 ,#41 ,#42 ,$) ;
#6=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE3”” ’ ,#15 ,#120 ,#121 ,$) ;
#7=MACHINING WORKINGSTEP(’”WS ”POCKET1”” ’ ,#15 ,#216 ,#217 ,$) ;
#8=MACHINING WORKINGSTEP(’”WS ”POCKET2”” ’ ,#15 ,#289 ,#290 ,$) ;
#9=MACHINING WORKINGSTEP(’”WS ”POCKET3”” ’ ,#15 ,#358 ,#359 ,$) ;
#10=MACHINING WORKINGSTEP(’”WS ”POCKET4”” ’ ,#15 ,#431 ,#432 ,$) ;
#11=MACHINING WORKINGSTEP(’”WS ”POCKET5”” ’ ,#15 ,#500 ,#501 ,$) ;
#12=MACHINING WORKINGSTEP(’”WS ”POCKET6”” ’ ,#15 ,#597 ,#598 ,$) ;
#13=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE4”” ’ ,#15 ,#618 ,#619 ,$) ;
#14=SETUP(’”SETUP” ’ ,#792 ,#15 ,(#793));
#15=ELEMENTARY SURFACE(’”SECURITY PLANE” ’ ,#18);
#16=PLANAR FACE(’”PLANAR FACE1” ’ ,#3 ,(#17) ,#22 ,#23 ,$, $, $, ()) ;
#17=PLANE MILLING($, $, ’ ”PLANAR FACE1” ’ , $, $,#29 ,#30 ,#31 ,$, $, $, $, $, $) ;
#18=AXIS2 PLACEMENT 3D(’”SECURITY PLANE PLACEMENT” ’ ,#19 ,#20 ,#21);
#19=CARTESIAN POINT(’”SECURITY PLANE: LOCATION” ’ , (0 . 0 , 0 . 0 , 1 0 . 0 , 0 . 0 , 0 . 0)) ;
#20=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#21=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#22=AXIS2 PLACEMENT 3D(’”PLANAR FACE1 PLACEMENT” ’ ,#34 ,#35 ,#36);
#23=ELEMENTARY SURFACE(’”PLANAR FACE1 DEPTH PLANE” ’ ,#37);
#24=BLOCK(’”WORKPIECE BLOCK” ’ ,#25 ,135 .0 ,185 .0 , −40 .0) ;
#25=AXIS2 PLACEMENT 3D(’””WORKPIECE BLOCK” PLACEMENT” ’ ,#26 ,#27 ,#28);
#26=CARTESIAN POINT(’””WORKPIECE BLOCK” : LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#27=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#28=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#29=MILLING CUTTING TOOL(’”T4” ’ ,#32 ,() , $, $, $) ;
#30=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 3 3 . 1 5 , $, $, $, $, $) ;
#31=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#32=FACEMILL(#33 ,$, $, $, $) ;
#33=MILLING TOOL DIMENSION(40 . 0 , $, $, $, 0 . 0 , $, $) ;
#34=CARTESIAN POINT(’”PLANAR FACE1” ’ , (1 7 5 . 0 , 8 . 1 2 5 , 0 . 0)) ;
#35=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#36=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#37=AXIS2 PLACEMENT 3D(’”PLANAR FACE1 DEPTH” ’ ,#38 ,#39 ,#40);
#38=CARTESIAN POINT(’”PLANAR FACE1 DEPTH” ’ , (0 . 0 , 0 . 0 , −2 . 0)) ;
#39=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#40=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#41=PLANAR FACE(’”PLANAR FACE2” ’ ,#3 ,(#42) ,#43 ,#44 ,$, $, $, (#45)) ;

168

www.EngineeringBooksPdf.com

#42=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE2” ’ , $, $,#46 ,#47 ,#48 ,$, $, $, $, $, $, $, $) ;
#43=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 PLACEMENT” ’ ,#51 ,#52 ,#53);
#44=ELEMENTARY SURFACE(’”PLANAR FACE2 DEPTH PLANE” ’ ,#54);
#45=BOSS(’”PLANAR FACE2 BOSS” ’ ,#3 ,() ,#58 ,#44 ,#59 , $) ;
#46=MILLING CUTTING TOOL(’”T3” ’ ,#49 ,() , $, $, $) ;
#47=MILLING TECHNOLOGY(0.013266666666666666 , .TCP. , $,132 .63333333333333 , $, $, $, $, $) ;
#48=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#49=ENDMILL(#50 ,$, $, $, $) ;
#50=MILLING TOOL DIMENSION(20 . 0 , $, $, $, 0 . 0 , $, $) ;
#51=CARTESIAN POINT(’”PLANAR FACE2” ’ , (144 . 94 , 112 . 042 , −4 . 0)) ;
#52=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#53=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#54=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 DEPTH” ’ ,#55 ,#56 ,#57);
#55=CARTESIAN POINT(’”PLANAR FACE2 DEPTH” ’ , (−65 .0 ,0 .0 , −12 .0)) ;
#56=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#57=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#58=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 PLACEMENT” ’ ,#60 ,#61 ,#62);
#59=GENERAL CLOSED PROFILE($,#63) ;
#60=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE2 BOSS”” ’ , (−115 .166 ,20 .01400000000001 ,0 .0)) ;
#61=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#62=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#63=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE2” ’ ,(#64 ,#65 ,#66 ,#67 ,#68) ,.F .) ;
#64=COMPOSITE CURVE SEGMENT($, .T. ,#71) ;
#65=COMPOSITE CURVE SEGMENT($, .T. ,#75) ;
#66=COMPOSITE CURVE SEGMENT($, .T. ,#83) ;
#67=COMPOSITE CURVE SEGMENT($, .T. ,#88) ;
#68=COMPOSITE CURVE SEGMENT($, .T. ,#96) ;
#71=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#72 ,#73 ,#74));
#72=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#73=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−2.7720000000000056 ,−25.256000000000014 ,0 .0)) ;
#74=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−4.754000000000005 ,−67.60600000000001 ,−7.0)) ;
#75=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE2” ’ ,#76 ,(#77) ,(#78) ,$, $) ;
#76=CIRCLE(’”CIRCLE” ’ ,#79 ,5 .0) ;
#77=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−4.754000000000005 ,−67.60600000000001 ,0 .0)) ;
#78=CARTESIAN POINT(’”TRIM POINT 2” ’ , (0 .2459999999999951 , −72 .60600000000001 ,0 .0)) ;
#79=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#80 ,#81 ,#82);
#80=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (0 .2459999999999951 , −67 .60600000000001 ,0 .0)) ;
#81=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#82=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#83=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#84 ,#85 ,#86 ,#87));
#84=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 .2459999999999951 , −72 .60600000000001 ,0 .0)) ;
#85=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (22 .676000000000002 , −72 .60600000000001 ,0 .0)) ;
#86=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (22.676000000000002 ,−74.50600000000001 ,−12.0)) ;
#87=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−0.5970000000000084 ,−74.55200000000002 ,−7.0)) ;
#88=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE2” ’ ,#89 ,(#90) ,(#91) ,$, $) ;
#89=CIRCLE(’”CIRCLE” ’ ,#92 ,5 .0) ;
#90=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−0.5970000000000084 ,−74.55200000000002 ,0 .0)) ;
#91=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5.373999999999995 ,−79.54700000000001 ,0 .0)) ;
#92=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#93 ,#94 ,#95);
#93=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−0.3739999999999952 ,−79.54600000000002 ,0 .0)) ;
#94=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#95=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#96=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#97 ,#98 ,#99 ,#100 ,#101 ,#102 ,#103));
#97=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5.373999999999995 ,−79.54700000000001 ,0 .0)) ;
#98=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5.373999999999995 ,−84.608 ,0 .0)) ;
#99=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−7.813999999999993 ,−103.93 ,−12.0)) ;
#100=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−14.774000000000001 ,−103.93 ,−7.0)) ;
#101=CARTESIAN POINT(’”POLYLINE POINT 4” ’ ,(−14.774000000000001 ,−49.902000000000015 ,−12.0)) ;
#102=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (−6.025999999999996 ,0 .0 ,−12.0)) ;
#103=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (0 . 0 , 0 . 0 , −7 . 0)) ;
#120=PLANAR FACE(’”PLANAR FACE3” ’ ,#3 ,(#121) ,#122 ,#123 ,$, $, $, (#124)) ;
#121=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE3” ’ , $, $,#46 ,#125 ,#126 ,$, $, $, $, $, $, $, $) ;
#122=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 PLACEMENT” ’ ,#127 ,#128 ,#129);
#123=ELEMENTARY SURFACE(’”PLANAR FACE3 DEPTH PLANE” ’ ,#130);
#124=BOSS(’”PLANAR FACE3 BOSS” ’ ,#3 ,() ,#134 ,#123 ,#135 , $) ;
#125=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $,127 .31666666666666 , $, $, $, $, $) ;
#126=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#127=CARTESIAN POINT(’”PLANAR FACE3” ’ , (1 . 694 , 194 . 94 , −14 . 0)) ;
#128=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#129=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#130=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 DEPTH” ’ ,#131 ,#132 ,#133);
#131=CARTESIAN POINT(’”PLANAR FACE3 DEPTH” ’ ,(−11.634 ,−21.989000000000004 ,−23.5)) ;
#132=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#133=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#134=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 PLACEMENT” ’ ,#136 ,#137 ,#138);
#135=GENERAL CLOSED PROFILE($,#139) ;
#136=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE3 BOSS”” ’ , (99 .206 , −27 .439999999999998 ,0 .0)) ;
#137=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#138=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#139=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE3” ’ ,(#140 ,#141 ,#142 ,#143 ,#144 ,#145 ,#146 ,#147 ,#148) ,.F .) ;
#140=COMPOSITE CURVE SEGMENT($, .T. ,#149) ;
#141=COMPOSITE CURVE SEGMENT($, .T. ,#163) ;
#142=COMPOSITE CURVE SEGMENT($, .T. ,#171) ;
#143=COMPOSITE CURVE SEGMENT($, .T. ,#174) ;
#144=COMPOSITE CURVE SEGMENT($, .T. ,#182) ;
#145=COMPOSITE CURVE SEGMENT($, .T. ,#192) ;
#146=COMPOSITE CURVE SEGMENT($, .T. ,#200) ;
#147=COMPOSITE CURVE SEGMENT($, .T. ,#203) ;

169

www.EngineeringBooksPdf.com

#148=COMPOSITE CURVE SEGMENT($, .T. ,#211) ;
#149=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#150 ,#151 ,#152 ,#153 ,#154 ,#155 ,#156 ,#157 ,#158 ,#159 ,

#160 ,#161 ,#162));
#150=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#151=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .100999999999999 , −6 .0020000000000095 ,0 .0)) ;
#152=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (9 .549999999999997 ,−36.75 ,−15.0)) ;
#153=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (18 .099999999999994 ,−86.85 ,−20.0)) ;
#154=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (18 .099999999999994 ,−152.5 ,−15.0)) ;
#155=CARTESIAN POINT(’”POLYLINE POINT 5” ’ ,(−85.9 ,−152.5 ,−15.0)) ;
#156=CARTESIAN POINT(’”POLYLINE POINT 6” ’ ,(−85.9 ,−85.346 ,−20.0)) ;
#157=CARTESIAN POINT(’”POLYLINE POINT 7” ’ ,(−75.9 ,−28.30000000000001 ,−15.0)) ;
#158=CARTESIAN POINT(’”POLYLINE POINT 8” ’ , (−69 .4 ,0 .0 , −20 .0)) ;
#159=CARTESIAN POINT(’”POLYLINE POINT 9” ’ , (−66 .4 ,0 .0 , −15 .0)) ;
#160=CARTESIAN POINT(’”POLYLINE POINT 10” ’ ,(−71.13300000000001 ,−35.50200000000001 ,−15.0)) ;
#161=CARTESIAN POINT(’”POLYLINE POINT 11” ’ ,(−73.898 ,−60.7 ,−15.0)) ;
#162=CARTESIAN POINT(’”POLYLINE POINT 12” ’ ,(−75.88 ,−103.05000000000001 ,−15.0)) ;
#163=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#164 ,(#165) ,(#166) , $, $) ;
#164=CIRCLE(’”CIRCLE” ’ ,#167 ,5 .0) ;
#165=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−75.88 ,−103.05000000000001 ,0 .0)) ;
#166=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−70.88 ,−108.05000000000001 ,0 .0)) ;
#167=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#168 ,#169 ,#170);
#168=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−70.88 ,−103.05000000000001 ,0 .0)) ;
#169=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#170=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#171=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#172 ,#173)) ;
#172=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−70.88 ,−108.05000000000001 ,0 .0)) ;
#173=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−41.900000000000006 ,−108.05000000000001 ,0 .0)) ;
#174=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#175 ,(#176) ,(#177) , $, $) ;
#175=CIRCLE(’”CIRCLE” ’ ,#178 ,5 .0) ;
#176=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−41.900000000000006 ,−108.05000000000001 ,0 .0)) ;
#177=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−36.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#178=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#179 ,#180 ,#181);
#179=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−41.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#180=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#181=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#182=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#183 ,#184 ,#185 ,#186 ,#187 ,#188 ,#189 ,#190 ,#191));
#183=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−36.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#184=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−36.90200000000001 ,−65.567 ,0 .0)) ;
#185=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−36.91100000000001 ,−65.435 ,2 .0)) ;
#186=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−36.90800000000001 ,−65.416 ,−20.0)) ;
#187=CARTESIAN POINT(’”POLYLINE POINT 4” ’ ,(−36.932 ,−65.132 ,−15.0)) ;
#188=CARTESIAN POINT(’”POLYLINE POINT 5” ’ ,(−36.94200000000001 ,−60.68899999999999 ,−15.0)) ;
#189=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (−33.971000000000004 ,−60.68899999999999 ,2 .0)) ;
#190=CARTESIAN POINT(’”POLYLINE POINT 7” ’ ,(−34.94600000000001 ,−73.05 ,−15.0)) ;
#191=CARTESIAN POINT(’”POLYLINE POINT 8” ’ ,(−34.95 ,−103.05000000000001 ,−15.0)) ;
#192=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#193 ,(#194) ,(#195) , $, $) ;
#193=CIRCLE(’”CIRCLE” ’ ,#196 ,5 .0) ;
#194=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−34.95 ,−103.05000000000001 ,0 .0)) ;
#195=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−29.950000000000003 ,−108.05000000000001 ,0 .0)) ;
#196=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#197 ,#198 ,#199);
#197=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−29.950000000000003 ,−103.05000000000001 ,0 .0)) ;
#198=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#199=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#200=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#201 ,#202)) ;
#201=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−29.950000000000003 ,−108.05000000000001 ,0 .0)) ;
#202=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (6 .941999999999993 , −108 .04599999999999 ,0 .0)) ;
#203=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#204 ,(#205) ,(#206) , $, $) ;
#204=CIRCLE(’”CIRCLE” ’ ,#207 ,5 .0) ;
#205=CARTESIAN POINT(’”TRIM POINT 1” ’ , (6 .941999999999993 , −108 .04599999999999 ,0 .0)) ;
#206=CARTESIAN POINT(’”TRIM POINT 2” ’ , (11 .713999999999999 , −102 .63 ,0 .0)) ;
#207=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#208 ,#209 ,#210);
#208=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (6 .72999999999999 , −103 .05000000000001 ,0 .0)) ;
#209=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#210=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#211=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#212 ,#213 ,#214 ,#215));
#212=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (11 .713999999999999 , −102 .63 ,0 .0)) ;
#213=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (6 .547999999999988 , −41 .982 ,0 .0)) ;
#214=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−1.301000000000002 ,0 .0 ,−20.0)) ;
#215=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (0 . 0 , 0 . 0 , −15 . 0)) ;
#216=CLOSED POCKET(’”POCKET1” ’ ,#3 ,(#217) ,#218 ,#219 ,() , $,#220 ,#221 ,$,#222) ;
#217=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET1” ’ , $, $,#46 ,#223 ,#224 ,$, $, $, $, $, $, $, $) ;
#218=AXIS2 PLACEMENT 3D(’”POCKET1 PLACEMENT” ’ ,#225 ,#226 ,#227);
#219=ELEMENTARY SURFACE(’”POCKET1 DEPTH PLANE” ’ ,#228);
#220=PLANAR POCKET BOTTOM CONDITION() ;
#221=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#222=GENERAL CLOSED PROFILE($,#232) ;
#223=MILLING TECHNOLOGY(0.008483333333333334 , .TCP. , $, 1 0 6 . 1 , $, $, $, $, $) ;
#224=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#225=CARTESIAN POINT(’”POCKET1” ’ , (29 . 924 , 47 . 056 , −14 . 0)) ;
#226=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#227=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#228=AXIS2 PLACEMENT 3D(’”POCKET1 DEPTH” ’ ,#229 ,#230 ,#231);
#229=CARTESIAN POINT(’”POCKET1 DEPTH” ’ ,(−0.02400000000000091 ,0 .4620000000000033 ,−17.0)) ;
#230=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#231=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#232=COMPOSITE CURVE(’”BOUNDARY: POCKET1” ’ ,(#233 ,#234 ,#235 ,#236 ,#237 ,#238 ,#239 ,#240 ,#241) ,.F .) ;
#233=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#242) ;
#234=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#250) ;

170

www.EngineeringBooksPdf.com

#235=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#253) ;
#236=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#256) ;
#237=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#264) ;
#238=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#267) ;
#239=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#275) ;
#240=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#278) ;
#241=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#286) ;
#242=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#243 ,(#244) ,(#245) , .T . , .CARTESIAN .) ;
#243=CIRCLE(’”CIRCLE” ’ ,#246 ,5 .0) ;
#244=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−0 .7469999999999999 ,10 .448 ,0 .0)) ;
#245=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5 .524000000000001 ,5 .453000000000003 ,0 .0)) ;
#246=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#247 ,#248 ,#249);
#247=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−0 .5240000000000009 ,5 .454000000000001 ,0 .0)) ;
#248=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#249=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#250=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#251 ,#252));
#251=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5 .524000000000001 ,5 .453000000000003 ,0 .0)) ;
#252=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5 .524000000000001 ,0 .392000000000003 ,0 .0)) ;
#253=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#254 ,#255));
#254=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5 .524000000000001 ,0 .392000000000003 ,0 .0)) ;
#255=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−7.983999999999998 ,−19.119999999999997 ,0 .0)) ;
#256=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#257 ,(#258) ,(#259) , .T . , .CARTESIAN .) ;
#257=CIRCLE(’”CIRCLE” ’ ,#260 ,5 .0) ;
#258=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−7.983999999999998 ,−19.119999999999997 ,0 .0)) ;
#259=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−3.003 ,−24.555999999999997 ,0 .0)) ;
#260=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#261 ,#262 ,#263);
#261=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−3.003999999999998 ,−19.555999999999997 ,0 .0)) ;
#262=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#263=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#264=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#265 ,#266));
#265=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−3.003 ,−24.555999999999997 ,0 .0)) ;
#266=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (76 .876 , −24 .555999999999997 ,0 .0)) ;
#267=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#268 ,(#269) ,(#270) , .T . , .CARTESIAN .) ;
#268=CIRCLE(’”CIRCLE” ’ ,#271 ,5 .0) ;
#269=CARTESIAN POINT(’”TRIM POINT 1” ’ , (76 .876 , −24 .555999999999997 ,0 .0)) ;
#270=CARTESIAN POINT(’”TRIM POINT 2” ’ , (81 .876 , −19 .555999999999997 ,0 .0)) ;
#271=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#272 ,#273 ,#274);
#272=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (76 .876 , −19 .555999999999997 ,0 .0)) ;
#273=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#274=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#275=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#276 ,#277));
#276=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (81 .876 , −19 .555999999999997 ,0 .0)) ;
#277=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (81 . 87100000000001 , 5 . 631 , 0 . 0)) ;
#278=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#279 ,(#280) ,(#281) , .T . , .CARTESIAN .) ;
#279=CIRCLE(’”CIRCLE” ’ ,#282 ,5 .0) ;
#280=CARTESIAN POINT(’”TRIM POINT 1” ’ , (81 . 87100000000001 , 5 . 631 , 0 . 0)) ;
#281=CARTESIAN POINT(’”TRIM POINT 2” ’ , (77 . 096 , 10 . 410000000000004 , 0 . 0)) ;
#282=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#283 ,#284 ,#285);
#283=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (76 . 876 , 5 . 4140000000000015 , 0 . 0)) ;
#284=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#285=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#286=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#287 ,#288));
#287=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (77 . 096 , 10 . 410000000000004 , 0 . 0)) ;
#288=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−0 .7469999999999999 ,10 .448 ,0 .0)) ;
#289=CLOSED POCKET(’”POCKET2” ’ ,#3 ,(#290) ,#291 ,#292 ,() , $,#293 ,#294 ,$,#295) ;
#290=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET2” ’ , $, $,#46 ,#296 ,#297 ,$, $, $, $, $, $, $, $) ;
#291=AXIS2 PLACEMENT 3D(’”POCKET2 PLACEMENT” ’ ,#298 ,#299 ,#300);
#292=ELEMENTARY SURFACE(’”POCKET2 DEPTH PLANE” ’ ,#301);
#293=PLANAR POCKET BOTTOM CONDITION() ;
#294=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#295=GENERAL CLOSED PROFILE($,#305) ;
#296=MILLING TECHNOLOGY(0.008483333333333334 , .TCP. , $,106 .63333333333334 , $, $, $, $, $) ;
#297=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#298=CARTESIAN POINT(’”POCKET2” ’ , (101 . 797 , 47 . 475 , −19 . 0)) ;
#299=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#300=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#301=AXIS2 PLACEMENT 3D(’”POCKET2 DEPTH” ’ ,#302 ,#303 ,#304);
#302=CARTESIAN POINT(’”POCKET2 DEPTH” ’ , (4 .503 ,−14.975000000000001 ,−24.5)) ;
#303=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#304=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#305=COMPOSITE CURVE(’”BOUNDARY: POCKET2” ’ ,(#306 ,#307 ,#308 ,#309 ,#310 ,#311 ,#312 ,#313) ,.F .) ;
#306=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#314) ;
#307=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#322) ;
#308=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#325) ;
#309=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#333) ;
#310=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#336) ;
#311=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#344) ;
#312=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#347) ;
#313=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#355) ;
#314=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#315 ,(#316) ,(#317) , .T . , .CARTESIAN .) ;
#315=CIRCLE(’”CIRCLE” ’ ,#318 ,5 .0) ;
#316=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−31 .063000000000002 ,10 .015999999999998 ,0 .0)) ;
#317=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−35 . 842 , 5 . 241 , 0 . 0)) ;
#318=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#319 ,#320 ,#321);
#319=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−30 .846999999999994 ,5 .024999999999999 ,0 .0)) ;
#320=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#321=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#322=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#323 ,#324));

171

www.EngineeringBooksPdf.com

#323=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−35 . 842 , 5 . 241 , 0 . 0)) ;
#324=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−35.846999999999994 ,−19.975 ,0 .0)) ;
#325=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#326 ,(#327) ,(#328) , .T . , .CARTESIAN .) ;
#326=CIRCLE(’”CIRCLE” ’ ,#329 ,5 .0) ;
#327=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−35.846999999999994 ,−19.975 ,0 .0)) ;
#328=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−30.846999999999994 ,−24.975 ,0 .0)) ;
#329=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#330 ,#331 ,#332);
#330=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−30.846999999999994 ,−19.975 ,0 .0)) ;
#331=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#332=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#333=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#334 ,#335));
#334=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−30.846999999999994 ,−24.975 ,0 .0)) ;
#335=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (5 . 003 , −24 . 975 , 0 . 0)) ;
#336=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#337 ,(#338) ,(#339) , .T . , .CARTESIAN .) ;
#337=CIRCLE(’”CIRCLE” ’ ,#340 ,5 .0) ;
#338=CARTESIAN POINT(’”TRIM POINT 1” ’ , (5 . 003 , −24 . 975 , 0 . 0)) ;
#339=CARTESIAN POINT(’”TRIM POINT 2” ’ , (10 . 003 , −19 . 975 , 0 . 0)) ;
#340=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#341 ,#342 ,#343);
#341=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (5 . 003 , −19 . 975 , 0 . 0)) ;
#342=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#343=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#344=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#345 ,#346));
#345=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (10 . 003 , −19 . 975 , 0 . 0)) ;
#346=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (9 .998000000000005 ,5 .211999999999996 ,0 .0)) ;
#347=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#348 ,(#349) ,(#350) , .T . , .CARTESIAN .) ;
#348=CIRCLE(’”CIRCLE” ’ ,#351 ,5 .0) ;
#349=CARTESIAN POINT(’”TRIM POINT 1” ’ , (9 .998000000000005 ,5 .211999999999996 ,0 .0)) ;
#350=CARTESIAN POINT(’”TRIM POINT 2” ’ , (5 . 222999999999999 , 9 . 991 , 0 . 0)) ;
#351=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#352 ,#353 ,#354);
#352=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (5 . 003 , 4 . 994999999999997 , 0 . 0)) ;
#353=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#354=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#355=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#356 ,#357));
#356=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (5 . 222999999999999 , 9 . 991 , 0 . 0)) ;
#357=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−31 .063000000000002 ,10 .015999999999998 ,0 .0)) ;
#358=CLOSED POCKET(’”POCKET3” ’ ,#3 ,(#359) ,#360 ,#361 ,() , $,#362 ,#363 ,$,#364) ;
#359=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET3” ’ , $, $,#46 ,#365 ,#366 ,$, $, $, $, $, $, $, $) ;
#360=AXIS2 PLACEMENT 3D(’”POCKET3 PLACEMENT” ’ ,#367 ,#368 ,#369);
#361=ELEMENTARY SURFACE(’”POCKET3 DEPTH PLANE” ’ ,#370);
#362=PLANAR POCKET BOTTOM CONDITION() ;
#363=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#364=GENERAL CLOSED PROFILE($,#374) ;
#365=MILLING TECHNOLOGY(0.006666666666666667 , .TCP. , $, 1 0 6 . 1 , $, $, $, $, $) ;
#366=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#367=CARTESIAN POINT(’”POCKET3” ’ , (32 . 592 , 32 . 5 , −19 . 0)) ;
#368=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#369=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#370=AXIS2 PLACEMENT 3D(’”POCKET3 DEPTH” ’ ,#371 ,#372 ,#373);
#371=CARTESIAN POINT(’”POCKET3 DEPTH” ’ , (−2.692 ,19 .509999999999998 ,−24.5)) ;
#372=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#373=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#374=COMPOSITE CURVE(’”BOUNDARY: POCKET3” ’ ,(#375 ,#376 ,#377 ,#378 ,#379 ,#380 ,#381 ,#382 ,#383) ,.F .) ;
#375=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#384) ;
#376=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#392) ;
#377=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#395) ;
#378=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#398) ;
#379=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#406) ;
#380=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#409) ;
#381=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#417) ;
#382=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#420) ;
#383=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#428) ;
#384=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#385 ,(#386) ,(#387) , .T . , .CARTESIAN .) ;
#385=CIRCLE(’”CIRCLE” ’ ,#388 ,5 .0) ;
#386=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−3 .414999999999999 ,25 .003999999999998 ,0 .0)) ;
#387=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−8 . 192 , 20 . 009 , 0 . 0)) ;
#388=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#389 ,#390 ,#391);
#389=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−3 .192 ,20 .009999999999998 ,0 .0)) ;
#390=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#391=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#392=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#393 ,#394));
#393=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−8 . 192 , 20 . 009 , 0 . 0)) ;
#394=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−8 . 192 , 14 . 948 , 0 . 0)) ;
#395=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#396 ,#397));
#396=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−8 . 192 , 14 . 948 , 0 . 0)) ;
#397=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−10.651999999999997 ,−4.564 ,0 .0)) ;
#398=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#399 ,(#400) ,(#401) , .T . , .CARTESIAN .) ;
#399=CIRCLE(’”CIRCLE” ’ ,#402 ,5 .0) ;
#400=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−10.651999999999997 ,−4.564 ,0 .0)) ;
#401=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5.670999999999999 ,−10.0 ,0 .0)) ;
#402=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#403 ,#404 ,#405);
#403=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−5.671999999999997 ,−5.0 ,0 .0)) ;
#404=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#405=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#406=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#407 ,#408));
#407=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5.670999999999999 ,−10.0 ,0 .0)) ;
#408=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (26 . 408 , −10 . 0 , 0 . 0)) ;
#409=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#410 ,(#411) ,(#412) , .T . , .CARTESIAN .) ;
#410=CIRCLE(’”CIRCLE” ’ ,#413 ,5 .0) ;

172

www.EngineeringBooksPdf.com

#411=CARTESIAN POINT(’”TRIM POINT 1” ’ , (26 . 408 , −10 . 0 , 0 . 0)) ;
#412=CARTESIAN POINT(’”TRIM POINT 2” ’ , (31 . 408 , −5 . 0 , 0 . 0)) ;
#413=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#414 ,#415 ,#416);
#414=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (26 . 408 , −5 . 0 , 0 . 0)) ;
#415=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#416=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#417=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#418 ,#419));
#418=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (31 . 408 , −5 . 0 , 0 . 0)) ;
#419=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (31 . 404000000000003 , 20 . 229 , 0 . 0)) ;
#420=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#421 ,(#422) ,(#423) , .T . , .CARTESIAN .) ;
#421=CIRCLE(’”CIRCLE” ’ ,#424 ,5 .0) ;
#422=CARTESIAN POINT(’”TRIM POINT 1” ’ , (31 . 404000000000003 , 20 . 229 , 0 . 0)) ;
#423=CARTESIAN POINT(’”TRIM POINT 2” ’ , (26 . 429000000000002 , 25 . 022 , 0 . 0)) ;
#424=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#425 ,#426 ,#427);
#425=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (26 . 408 , 20 . 020000000000003 , 0 . 0)) ;
#426=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#427=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#428=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#429 ,#430));
#429=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (26 . 429000000000002 , 25 . 022 , 0 . 0)) ;
#430=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−3 .414999999999999 ,25 .003999999999998 ,0 .0)) ;
#431=CLOSED POCKET(’”POCKET4” ’ ,#3 ,(#432) ,#433 ,#434 ,() , $,#435 ,#436 ,$,#437) ;
#432=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET4” ’ , $, $,#46 ,#438 ,#439 ,$, $, $, $, $, $, $, $) ;
#433=AXIS2 PLACEMENT 3D(’”POCKET4 PLACEMENT” ’ ,#440 ,#441 ,#442);
#434=ELEMENTARY SURFACE(’”POCKET4 DEPTH PLANE” ’ ,#443);
#435=PLANAR POCKET BOTTOM CONDITION() ;
#436=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#437=GENERAL CLOSED PROFILE($,#447) ;
#438=MILLING TECHNOLOGY(0 . 0 1 3 8 , .TCP. , $,137 .93333333333334 , $, $, $, $, $) ;
#439=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#440=CARTESIAN POINT(’”POCKET4” ’ , (55 . 508 , 92 . 56 , −25 . 0)) ;
#441=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#442=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#443=AXIS2 PLACEMENT 3D(’”POCKET4 DEPTH” ’ ,#444 ,#445 ,#446);
#444=CARTESIAN POINT(’”POCKET4 DEPTH” ’ ,(−1.5080000000000027 ,8 .739999999999995 ,−25.0)) ;
#445=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#446=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#447=COMPOSITE CURVE(’”BOUNDARY: POCKET4” ’ ,(#448 ,#449 ,#450 ,#451 ,#452 ,#453 ,#454 ,#455) ,.F .) ;
#448=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#456) ;
#449=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#459) ;
#450=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#467) ;
#451=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#470) ;
#452=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#478) ;
#453=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#481) ;
#454=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#489) ;
#455=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#492) ;
#456=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#457 ,#458));
#457=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (3 .4919999999999973 ,14 .239999999999995 ,0 .0)) ;
#458=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−23 .939000000000004 ,14 .236000000000004 ,0 .0)) ;
#459=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#460 ,(#461) ,(#462) , .T . , .CARTESIAN .) ;
#460=CIRCLE(’”CIRCLE” ’ ,#463 ,5 .0) ;
#461=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−23 .939000000000004 ,14 .236000000000004 ,0 .0)) ;
#462=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−28 .732000000000003 ,9 .474000000000004 ,0 .0)) ;
#463=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#464 ,#465 ,#466);
#464=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−23 .738000000000003 ,9 .239999999999995 ,0 .0)) ;
#465=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#466=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#467=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#468 ,#469));
#468=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−28 .732000000000003 ,9 .474000000000004 ,0 .0)) ;
#469=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−30.488000000000003 ,−28.11 ,0 .0)) ;
#470=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#471 ,(#472) ,(#473) , .T . , .CARTESIAN .) ;
#471=CIRCLE(’”CIRCLE” ’ ,#474 ,5 .0) ;
#472=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−30.488000000000003 ,−28.11 ,0 .0)) ;
#473=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−25.488000000000003 ,−33.11 ,0 .0)) ;
#474=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#475 ,#476 ,#477);
#475=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−25.488000000000003 ,−28.11 ,0 .0)) ;
#476=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#477=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#478=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#479 ,#480));
#479=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−25.488000000000003 ,−33.11 ,0 .0)) ;
#480=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .4919999999999973 , −33 .11 ,0 .0)) ;
#481=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#482 ,(#483) ,(#484) , .T . , .CARTESIAN .) ;
#482=CIRCLE(’”CIRCLE” ’ ,#485 ,5 .0) ;
#483=CARTESIAN POINT(’”TRIM POINT 1” ’ , (3 .4919999999999973 , −33 .11 ,0 .0)) ;
#484=CARTESIAN POINT(’”TRIM POINT 2” ’ , (8 .491999999999997 , −28 .11 ,0 .0)) ;
#485=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#486 ,#487 ,#488);
#486=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (3 .4919999999999973 , −28 .11 ,0 .0)) ;
#487=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#488=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#489=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#490 ,#491));
#490=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (8 .491999999999997 , −28 .11 ,0 .0)) ;
#491=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (8 .491999999999997 ,9 .239999999999995 ,0 .0)) ;
#492=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#493 ,(#494) ,(#495) , .T . , .CARTESIAN .) ;
#493=CIRCLE(’”CIRCLE” ’ ,#496 ,5 .0) ;
#494=CARTESIAN POINT(’”TRIM POINT 1” ’ , (8 .491999999999997 ,9 .239999999999995 ,0 .0)) ;
#495=CARTESIAN POINT(’”TRIM POINT 2” ’ , (3 .4919999999999973 ,14 .239999999999995 ,0 .0)) ;
#496=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#497 ,#498 ,#499);
#497=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (3 .4919999999999973 ,9 .239999999999995 ,0 .0)) ;
#498=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;

173

www.EngineeringBooksPdf.com

#499=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#500=CLOSED POCKET(’”POCKET5” ’ ,#3 ,(#501) ,#502 ,#503 ,(#504) ,$,#505 ,#506 ,$,#507) ;
#501=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET5” ’ , $, $,#46 ,#508 ,#509 ,$, $, $, $, $, $, $, $) ;
#502=AXIS2 PLACEMENT 3D(’”POCKET5 PLACEMENT” ’ ,#510 ,#511 ,#512);
#503=ELEMENTARY SURFACE(’”POCKET5 DEPTH PLANE” ’ ,#513);
#504=BOSS(’”POCKET5 BOSS” ’ ,#3 ,() ,#517 ,#503 ,#518 , $) ;
#505=PLANAR POCKET BOTTOM CONDITION() ;
#506=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#507=GENERAL CLOSED PROFILE($,#527) ;
#508=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $,107 .16666666666667 , $, $, $, $, $) ;
#509=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#510=CARTESIAN POINT(’”POCKET5” ’ , (104 . 64 , 87 . 373 , −25 . 5)) ;
#511=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#512=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#513=AXIS2 PLACEMENT 3D(’”POCKET5 DEPTH” ’ ,#514 ,#515 ,#516);
#514=CARTESIAN POINT(’”POCKET5 DEPTH” ’ ,(0 .8529999999999944 ,−4.927000000000007 ,−25.5)) ;
#515=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#516=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#517=AXIS2 PLACEMENT 3D(’”POCKET5 PLACEMENT” ’ ,#519 ,#520 ,#521);
#518=CIRCULAR CLOSED PROFILE(#522 ,#523);
#519=CARTESIAN POINT(’”LOCATIONPOCKET5” ’ ,(−18.040000000000006 ,−3.3230000000000075 ,−12.0)) ;
#520=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#521=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#522=AXIS2 PLACEMENT 3D(’”CIRCULAR PROFILE LOCATION” ’ ,#524 ,#525 ,#526);
#523=TOLERANCED LENGTH MEASURE(8 . 5 , $) ;
#524=CARTESIAN POINT(’”LOCATION POINT” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#525=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#526=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#527=COMPOSITE CURVE(’”BOUNDARY: POCKET5” ’ ,(#528 ,#529 ,#530 ,#531 ,#532 ,#533 ,#534 ,#535 ,#536 ,#537 ,#538) ,.F .) ;
#528=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#539) ;
#529=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#547) ;
#530=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#550) ;
#531=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#558) ;
#532=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#561) ;
#533=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#564) ;
#534=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#572) ;
#535=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#575) ;
#536=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#583) ;
#537=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#586) ;
#538=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#594) ;
#539=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#540 ,(#541) ,(#542) , .T . , .CARTESIAN .) ;
#540=CIRCLE(’”CIRCLE” ’ ,#543 ,5 .0) ;
#541=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−32 .947 ,18 .429000000000002 ,0 .0)) ;
#542=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−37 .995000000000005 ,13 .939999999999998 ,0 .0)) ;
#543=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#544 ,#545 ,#546);
#544=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33 .019999999999996 ,13 .426999999999992 ,0 .0)) ;
#545=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#546=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#547=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#548 ,#549));
#548=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−37 .995000000000005 ,13 .939999999999998 ,0 .0)) ;
#549=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38 .022000000000006 ,13 .527000000000001 ,0 .0)) ;
#550=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#551 ,(#552) ,(#553) , .T . , .CARTESIAN .) ;
#551=CIRCLE(’”CIRCLE” ’ ,#554 ,5 .0) ;
#552=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38 .022000000000006 ,13 .527000000000001 ,0 .0)) ;
#553=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−38 .092 ,13 .096999999999994 ,0 .0)) ;
#554=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#555 ,#556 ,#557);
#555=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33 .129999999999995 ,12 .50699999999999 ,0 .0)) ;
#556=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#557=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#558=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#559 ,#560));
#559=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−38 .092 ,13 .096999999999994 ,0 .0)) ;
#560=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38 .566 ,7 .0719999999999885 ,0 .0)) ;
#561=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#562 ,#563));
#562=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−38 .566 ,7 .0719999999999885 ,0 .0)) ;
#563=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#564=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#565 ,(#566) ,(#567) , .T . , .CARTESIAN .) ;
#565=CIRCLE(’”CIRCLE” ’ ,#568 ,5 .0) ;
#566=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#567=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−33.57000000000001 ,−27.803000000000004 ,0 .0)) ;
#568=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#569 ,#570 ,#571);
#569=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−33.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#570=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#571=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#572=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#573 ,#574));
#573=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−33.57000000000001 ,−27.803000000000004 ,0 .0)) ;
#574=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .0720000000000027 , −27 .799000000000007 ,0 .0)) ;
#575=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#576 ,(#577) ,(#578) , .T . , .CARTESIAN .) ;
#576=CIRCLE(’”CIRCLE” ’ ,#579 ,5 .0) ;
#577=CARTESIAN POINT(’”TRIM POINT 1” ’ , (3 .0720000000000027 , −27 .799000000000007 ,0 .0)) ;
#578=CARTESIAN POINT(’”TRIM POINT 2” ’ , (7 .843999999999994 , −22 .38300000000001 ,0 .0)) ;
#579=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#580 ,#581 ,#582);
#580=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (2 .8599999999999994 , −22 .80300000000001 ,0 .0)) ;
#581=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#582=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#583=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#584 ,#585));
#584=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (7 .843999999999994 , −22 .38300000000001 ,0 .0)) ;
#585=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (4 .810999999999993 ,13 .549999999999997 ,0 .0)) ;
#586=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#587 ,(#588) ,(#589) , .T . , .CARTESIAN .) ;

174

www.EngineeringBooksPdf.com

#587=CIRCLE(’”CIRCLE” ’ ,#590 ,5 .0) ;
#588=CARTESIAN POINT(’”TRIM POINT 1” ’ , (4 .810999999999993 ,13 .549999999999997 ,0 .0)) ;
#589=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−0 .07800000000000296 ,17 .94099999999999 ,0 .0)) ;
#590=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#591 ,#592 ,#593);
#591=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−0 .15000000000000568 ,12 .946999999999989 ,0 .0)) ;
#592=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#593=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#594=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#595 ,#596)) ;
#595=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−0 .07800000000000296 ,17 .94099999999999 ,0 .0)) ;
#596=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−32 .947 ,18 .429000000000002 ,0 .0)) ;
#597=CLOSED POCKET(’”POCKET6” ’ ,#3 ,(#598) ,#599 ,#600 ,() , $,#601 ,#602 ,$,#603) ;
#598=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET6” ’ , $, $,#46 ,#604 ,#605 ,$, $, $, $, $, $, $, $) ;
#599=AXIS2 PLACEMENT 3D(’”POCKET6 PLACEMENT” ’ ,#606 ,#607 ,#608);
#600=ELEMENTARY SURFACE(’”POCKET6 DEPTH PLANE” ’ ,#609);
#601=PLANAR POCKET BOTTOM CONDITION() ;
#602=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#603=CIRCULAR CLOSED PROFILE(#613 ,#614);
#604=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 9 5 . 5 , $, $, $, $, $) ;
#605=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#606=CARTESIAN POINT(’”POCKET6” ’ , (86 . 6 , 84 . 055 , −25 . 5)) ;
#607=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#608=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#609=AXIS2 PLACEMENT 3D(’”POCKET6 DEPTH” ’ ,#610 ,#611 ,#612);
#610=CARTESIAN POINT(’”POCKET6 DEPTH” ’ , (0 . 0 , 0 . 0 , −27 . 0)) ;
#611=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#612=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#613=AXIS2 PLACEMENT 3D(’”CIRCULAR PROFILE LOCATION” ’ ,#615 ,#616 ,#617);
#614=TOLERANCED LENGTH MEASURE(14 . 0 , $) ;
#615=CARTESIAN POINT(’”LOCATION POINT” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#616=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#617=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#618=PLANAR FACE(’”PLANAR FACE4” ’ ,#3 ,(#619) ,#620 ,#621 ,$, $, $, (#622)) ;
#619=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE4” ’ , $, $,#46 ,#623 ,#624 ,$, $, $, $, $, $, $, $) ;
#620=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 PLACEMENT” ’ ,#625 ,#626 ,#627);
#621=ELEMENTARY SURFACE(’”PLANAR FACE4 DEPTH PLANE” ’ ,#628);
#622=BOSS(’”PLANAR FACE4 BOSS” ’ ,#3 ,() ,#632 ,#621 ,#633 , $) ;
#623=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 1 08 . 7 5 , $, $, $, $, $) ;
#624=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#625=CARTESIAN POINT(’”PLANAR FACE4” ’ , (1 . 694 , 194 . 94 , −25 . 5)) ;
#626=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#627=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#628=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 DEPTH” ’ ,#629 ,#630 ,#631);
#629=CARTESIAN POINT(’”PLANAR FACE4 DEPTH” ’ ,(−11.634 ,−21.989000000000004 ,−27.0)) ;
#630=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#631=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#632=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 PLACEMENT” ’ ,#634 ,#635 ,#636);
#633=GENERAL CLOSED PROFILE($,#637) ;
#634=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE4 BOSS”” ’ , (91 .31099999999999 , −27 .439999999999998 ,0 .0)) ;
#635=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#636=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#637=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE4” ’ ,(#638 ,#639 ,#640 ,#641 ,#642 ,#643 ,#644 ,#645 ,#646 ,#647 ,#648 ,

#649 ,#650 ,#651 ,#652 ,#653 ,#654 ,#655 ,#656 ,#657 ,#658) ,.F .) ;
#638=COMPOSITE CURVE SEGMENT($, .T. ,#659) ;
#639=COMPOSITE CURVE SEGMENT($, .T. ,#676) ;
#640=COMPOSITE CURVE SEGMENT($, .T. ,#684) ;
#641=COMPOSITE CURVE SEGMENT($, .T. ,#687) ;
#642=COMPOSITE CURVE SEGMENT($, .T. ,#695) ;
#643=COMPOSITE CURVE SEGMENT($, .T. ,#699) ;
#644=COMPOSITE CURVE SEGMENT($, .T. ,#707) ;
#645=COMPOSITE CURVE SEGMENT($, .T. ,#710) ;
#646=COMPOSITE CURVE SEGMENT($, .T. ,#718) ;
#647=COMPOSITE CURVE SEGMENT($, .T. ,#721) ;
#648=COMPOSITE CURVE SEGMENT($, .T. ,#729) ;
#649=COMPOSITE CURVE SEGMENT($, .T. ,#732) ;
#650=COMPOSITE CURVE SEGMENT($, .T. ,#740) ;
#651=COMPOSITE CURVE SEGMENT($, .T. ,#743) ;
#652=COMPOSITE CURVE SEGMENT($, .T. ,#751) ;
#653=COMPOSITE CURVE SEGMENT($, .T. ,#754) ;
#654=COMPOSITE CURVE SEGMENT($, .T. ,#762) ;
#655=COMPOSITE CURVE SEGMENT($, .T. ,#765) ;
#656=COMPOSITE CURVE SEGMENT($, .T. ,#773) ;
#657=COMPOSITE CURVE SEGMENT($, .T. ,#776) ;
#658=COMPOSITE CURVE SEGMENT($, .T. ,#784) ;
#659=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#660 ,#661 ,#662 ,#663 ,#664 ,#665 ,#666 ,#667 ,#668 ,#669 ,

#670 ,#671 ,#672 ,#673 ,#674 ,#675));
#660=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#661=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (7 . 8 9500000000001 , 0 . 0 , 0 . 0)) ;
#662=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (10 .99600000000001 , −6 .0020000000000095 ,13 .5)) ;
#663=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (17 .445000000000007 ,−36.75 ,−13.5)) ;
#664=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (25 .995000000000005 , −86 .85 ,13 .5)) ;
#665=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (25 .995000000000005 ,−152.5 ,−13.5)) ;
#666=CARTESIAN POINT(’”POLYLINE POINT 6” ’ ,(−78.005 ,−152.5 ,−13.5)) ;
#667=CARTESIAN POINT(’”POLYLINE POINT 7” ’ , (−78 .005 , −85 .346 ,13 .5)) ;
#668=CARTESIAN POINT(’”POLYLINE POINT 8” ’ ,(−68.005 ,−28.30000000000001 ,−13.5)) ;
#669=CARTESIAN POINT(’”POLYLINE POINT 9” ’ , (−61 .504999999999995 ,0 .0 ,13 .5)) ;
#670=CARTESIAN POINT(’”POLYLINE POINT 10” ’ , (−58.504999999999995 ,0 .0 ,−13.5)) ;
#671=CARTESIAN POINT(’”POLYLINE POINT 11” ’ , (−54.504999999999995 ,−0.25 ,13 .5)) ;
#672=CARTESIAN POINT(’”POLYLINE POINT 12” ’ , (−52.629999999999995 ,−1.0999999999999943 ,13.5)) ;

175

www.EngineeringBooksPdf.com

#673=CARTESIAN POINT(’”POLYLINE POINT 13” ’ ,(−51.254999999999995 ,−2.4989999999999952 ,−13.5)) ;
#674=CARTESIAN POINT(’”POLYLINE POINT 14” ’ ,(−50.404999999999994 ,−4.349999999999994 ,−13.5)) ;
#675=CARTESIAN POINT(’”POLYLINE POINT 15” ’ ,(−41.55799999999999 ,−37.43700000000001 ,−13.5)) ;
#676=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#677 ,(#678) ,(#679) , $, $) ;
#677=CIRCLE(’”CIRCLE” ’ ,#680 ,5 .0) ;
#678=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−41.55799999999999 ,−37.43700000000001 ,0 .0)) ;
#679=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−41.340999999999994 ,−38.01599999999999 ,0 .0)) ;
#680=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#681 ,#682 ,#683);
#681=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−36 .775 , −35 .97 ,0 .0)) ;
#682=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#683=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#684=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#685 ,#686)) ;
#685=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−41.340999999999994 ,−38.01599999999999 ,0 .0)) ;
#686=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−40 .474 , −39 .943 ,0 .0)) ;
#687=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#688 ,(#689) ,(#690) , $, $) ;
#688=CIRCLE(’”CIRCLE” ’ ,#691 ,5 .0) ;
#689=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−40 .474 , −39 .943 ,0 .0)) ;
#690=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−39.751 ,−41.031000000000006 ,0 .0)) ;
#691=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#692 ,#693 ,#694);
#692=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−35.98499999999999 ,−37.74000000000001 ,0 .0)) ;
#693=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#694=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#695=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#696 ,#697 ,#698));
#696=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−39.751 ,−41.031000000000006 ,0 .0)) ;
#697=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38.69199999999999 ,−42.163 ,0 .0)) ;
#698=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−38.19499999999999 ,−42.656000000000006 ,−13.5)) ;
#699=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#700 ,(#701) ,(#702) , $, $) ;
#700=CIRCLE(’”CIRCLE” ’ ,#703 ,5 .0) ;
#701=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38.19499999999999 ,−42.656000000000006 ,0 .0)) ;
#702=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−37 .135 , −43 .419 ,0 .0)) ;
#703=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#704 ,#705 ,#706);
#704=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−34.76499999999999 ,−39.00999999999999 ,0 .0)) ;
#705=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#706=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#707=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#708 ,#709)) ;
#708=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−37 .135 , −43 .419 ,0 .0)) ;
#709=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−35.336999999999996 ,−44.316 ,0 .0)) ;
#710=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#711 ,(#712) ,(#713) , $, $) ;
#711=CIRCLE(’”CIRCLE” ’ ,#714 ,5 .0) ;
#712=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−35.336999999999996 ,−44.316 ,0 .0)) ;
#713=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−34.086999999999996 ,−44.693 ,0 .0)) ;
#714=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#715 ,#716 ,#717);
#715=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33.275 ,−39.760000000000005 ,0 .0)) ;
#716=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#717=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#718=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#719 ,#720)) ;
#719=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−34.086999999999996 ,−44.693 ,0 .0)) ;
#720=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−32.095 ,−45.016999999999996 ,0 .0)) ;
#721=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#722 ,(#723) ,(#724) , $, $) ;
#722=CIRCLE(’”CIRCLE” ’ ,#725 ,5 .0) ;
#723=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−32.095 ,−45.016999999999996 ,0 .0)) ;
#724=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−31.660999999999994 ,−45.054 ,0 .0)) ;
#725=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#726 ,#727 ,#728);
#726=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−31 .455 , −40 .06 ,0 .0)) ;
#727=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#728=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#729=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#730 ,#731)) ;
#730=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−31.660999999999994 ,−45.054 ,0 .0)) ;
#731=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−24.498999999999995 ,−45.108000000000004 ,0 .0)) ;
#732=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#733 ,(#734) ,(#735) , $, $) ;
#733=CIRCLE(’”CIRCLE” ’ ,#736 ,5 .0) ;
#734=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−24.498999999999995 ,−45.108000000000004 ,0 .0)) ;
#735=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−23.823999999999998 ,−45.034000000000006 ,0 .0)) ;
#736=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#737 ,#738 ,#739);
#737=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−24 .705 , −40 .11 ,0 .0)) ;
#738=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#739=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#740=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#741 ,#742)) ;
#741=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−23.823999999999998 ,−45.034000000000006 ,0 .0)) ;
#742=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−21.71799999999999 ,−44.653999999999996 ,0 .0)) ;
#743=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#744 ,(#745) ,(#746) , $, $) ;
#744=CIRCLE(’”CIRCLE” ’ ,#747 ,5 .0) ;
#745=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−21.71799999999999 ,−44.653999999999996 ,0 .0)) ;
#746=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−20 .491 , −44 .208 ,0 .0)) ;
#747=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#748 ,#749 ,#750);
#748=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−22.795 ,−39.769999999999996 ,0 .0)) ;
#749=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#750=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#751=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#752 ,#753)) ;
#752=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−20 .491 , −44 .208 ,0 .0)) ;
#753=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−18.86399999999999 ,−43.358000000000004 ,0 .0)) ;
#754=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#755 ,(#756) ,(#757) , $, $) ;
#755=CIRCLE(’”CIRCLE” ’ ,#758 ,5 .0) ;
#756=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−18.86399999999999 ,−43.358000000000004 ,0 .0)) ;
#757=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−17.820999999999998 ,−42.57299999999999 ,0 .0)) ;
#758=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#759 ,#760 ,#761);
#759=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−21.32499999999999 ,−39.0 ,0 .0)) ;
#760=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;

176

www.EngineeringBooksPdf.com

#761=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#762=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#763 ,#764)) ;
#763=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−17.820999999999998 ,−42.57299999999999 ,0 .0)) ;
#764=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−16.31899999999999 ,−40.997 ,0 .0)) ;
#765=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#766 ,(#767) ,(#768) , $, $) ;
#766=CIRCLE(’”CIRCLE” ’ ,#769 ,5 .0) ;
#767=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−16.31899999999999 ,−40.997 ,0 .0)) ;
#768=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−15.509999999999991 ,−39.748000000000005 ,0 .0)) ;
#769=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#770 ,#771 ,#772);
#770=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−20.064999999999998 ,−37.68000000000001 ,0 .0)) ;
#771=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#772=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#773=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#774 ,#775)) ;
#774=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−15.509999999999991 ,−39.748000000000005 ,0 .0)) ;
#775=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−14.748999999999995 ,−38.06299999999999 ,0 .0)) ;
#776=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#777 ,(#778) ,(#779) , $, $) ;
#777=CIRCLE(’”CIRCLE” ’ ,#780 ,5 .0) ;
#778=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−14.748999999999995 ,−38.06299999999999 ,0 .0)) ;
#779=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−14.548999999999992 ,−37.46600000000001 ,0 .0)) ;
#780=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#781 ,#782 ,#783);
#781=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−19.375 ,−36.16999999999999 ,0 .0)) ;
#782=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#783=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#784=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#785 ,#786 ,#787 ,#788 ,#789 ,#790 ,#791));
#785=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−14.548999999999992 ,−37.46600000000001 ,0 .0)) ;
#786=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5.724999999999994 ,−4.460000000000008 ,0 .0)) ;
#787=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−5.0 ,−2.8300000000000125 ,−13.5)) ;
#788=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (−4.036999999999992 ,−1.681999999999988 ,13.5)) ;
#789=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (−3.5 ,−1.2050000000000125 ,13 .5)) ;
#790=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (−1.9299999999999926 ,−0.30000000000001137 ,13.5)) ;
#791=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (0 . 0 , 0 . 0 , −13 . 5)) ;
#792=AXIS2 PLACEMENT 3D(’””SETUP” ORIGIN” ’ ,#794 ,#795 ,#796);
#793=WORKPIECE SETUP(#3 ,#797 ,$, $, ()) ;
#794=CARTESIAN POINT(’””SETUP” : LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#795=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#796=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#797=AXIS2 PLACEMENT 3D(’””WORKPIECE135. 0X185 . 0X40 .0” SETUP” ’ ,#798 ,#799 ,#800);
#798=CARTESIAN POINT(’”SECURITY PLANE: LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#799=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#800=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
ENDSEC;
END−ISO−10303−21

9.1.2 Sloped Boundary Test Part

ISO−10303−21
HEADER;
FILE DESCRIPTION(
(’ Fishhead With 3D Pocket ’) ,
’ 2 ; 1 ’) ;
FILE NAME(
’TEST.STP’ ,
(’Wesley Essink ’ , ’ Xianzhi Zhang ’ , ’ Aydin Nassehi ’) ,
(’ Un ive r s i ty o f Bath ’) ,
’ ’ ,
’STEPMAN’ ,
’ ’) ;
FILE SCHEMA((’COMBINED Schema ’)) ;
ENDSEC;
DATA;
#1=PROJECT(’”RECOGNISED ISO 14649 PART 21 FILE FROM G&M CODES” ’ ,#2 ,(#3) ,$, $, $) ;
#2=WORKPLAN(’”MAIN WORKPLAN”’ ,(#4 ,#5 ,#6 ,#7 ,#8 ,#9 ,#10 ,#11 ,#12 ,#13) ,$,#14 , $) ;
#3=WORKPIECE(’”WORKPIECE135. 0X185 . 0X40 . 0” ’ , $, $, $, $,#24 , ()) ;
#4=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE1”” ’ ,#15 ,#16 ,#17 ,$) ;
#5=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE2”” ’ ,#15 ,#41 ,#42 ,$) ;
#6=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE3”” ’ ,#15 ,#120 ,#121 ,$) ;
#7=MACHINING WORKINGSTEP(’”WS ”POCKET1”” ’ ,#15 ,#216 ,#217 ,$) ;
#8=MACHINING WORKINGSTEP(’”WS ”POCKET2”” ’ ,#15 ,#289 ,#290 ,$) ;
#9=MACHINING WORKINGSTEP(’”WS ”POCKET3”” ’ ,#15 ,#358 ,#359 ,$) ;
#10=MACHINING WORKINGSTEP(’”WS ”POCKET4”” ’ ,#15 ,#431 ,#432 ,$) ;
#11=MACHINING WORKINGSTEP(’”WS ”POCKET5”” ’ ,#15 ,#500 ,#501 ,$) ;
#12=MACHINING WORKINGSTEP(’”WS ”POCKET6”” ’ ,#15 ,#597 ,#598 ,$) ;
#13=MACHINING WORKINGSTEP(’”WS ”PLANAR FACE4”” ’ ,#15 ,#618 ,#619 ,$) ;
#14=SETUP(’”SETUP” ’ ,#792 ,#15 ,(#793));
#15=ELEMENTARY SURFACE(’”SECURITY PLANE” ’ ,#18);
#16=PLANAR FACE(’”PLANAR FACE1” ’ ,#3 ,(#17) ,#22 ,#23 ,$, $, $, ()) ;
#17=PLANE MILLING($, $, ’ ”PLANAR FACE1” ’ , $, $,#29 ,#30 ,#31 ,$, $, $, $, $, $) ;
#18=AXIS2 PLACEMENT 3D(’”SECURITY PLANE PLACEMENT” ’ ,#19 ,#20 ,#21);
#19=CARTESIAN POINT(’”SECURITY PLANE: LOCATION” ’ , (0 . 0 , 0 . 0 , 1 0 . 0 , 0 . 0 , 0 . 0)) ;
#20=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#21=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#22=AXIS2 PLACEMENT 3D(’”PLANAR FACE1 PLACEMENT” ’ ,#34 ,#35 ,#36);
#23=ELEMENTARY SURFACE(’”PLANAR FACE1 DEPTH PLANE” ’ ,#37);
#24=BLOCK(’”WORKPIECE BLOCK” ’ ,#25 ,135 .0 ,185 .0 , −40 .0) ;
#25=AXIS2 PLACEMENT 3D(’””WORKPIECE BLOCK” PLACEMENT” ’ ,#26 ,#27 ,#28);
#26=CARTESIAN POINT(’””WORKPIECE BLOCK” : LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#27=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;

177

www.EngineeringBooksPdf.com

#28=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#29=MILLING CUTTING TOOL(’”T4” ’ ,#32 ,() , $, $, $) ;
#30=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 3 3 . 1 5 , $, $, $, $, $) ;
#31=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#32=FACEMILL(#33 ,$, $, $, $) ;
#33=MILLING TOOL DIMENSION(40 . 0 , $, $, $, 0 . 0 , $, $) ;
#34=CARTESIAN POINT(’”PLANAR FACE1” ’ , (1 7 5 . 0 , 8 . 1 2 5 , 0 . 0)) ;
#35=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#36=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#37=AXIS2 PLACEMENT 3D(’”PLANAR FACE1 DEPTH” ’ ,#38 ,#39 ,#40);
#38=CARTESIAN POINT(’”PLANAR FACE1 DEPTH” ’ , (0 . 0 , 0 . 0 , −2 . 0)) ;
#39=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#40=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#41=PLANAR FACE(’”PLANAR FACE2” ’ ,#3 ,(#42) ,#43 ,#44 ,$, $, $, (#45)) ;
#42=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE2” ’ , $, $,#46 ,#47 ,#48 ,$, $, $, $, $, $, $, $) ;
#43=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 PLACEMENT” ’ ,#51 ,#52 ,#53);
#44=ELEMENTARY SURFACE(’”PLANAR FACE2 DEPTH PLANE” ’ ,#54);
#45=BOSS(’”PLANAR FACE2 BOSS” ’ ,#3 ,() ,#58 ,#44 ,#59 , $) ;
#46=MILLING CUTTING TOOL(’”T3” ’ ,#49 ,() , $, $, $) ;
#47=MILLING TECHNOLOGY(0.013266666666666666 , .TCP. , $,132 .63333333333333 , $, $, $, $, $) ;
#48=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#49=ENDMILL(#50 ,$, $, $, $) ;
#50=MILLING TOOL DIMENSION(10 . 0 , $, $, $, 0 . 0 , $, $) ;
#51=CARTESIAN POINT(’”PLANAR FACE2” ’ , (144 . 94 , 112 . 042 , −4 . 0)) ;
#52=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#53=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#54=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 DEPTH” ’ ,#55 ,#56 ,#57);
#55=CARTESIAN POINT(’”PLANAR FACE2 DEPTH” ’ , (−65 .0 ,0 .0 , −12 .0)) ;
#56=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#57=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#58=AXIS2 PLACEMENT 3D(’”PLANAR FACE2 PLACEMENT” ’ ,#60 ,#61 ,#62);
#59=GENERAL CLOSED PROFILE($,#63) ;
#60=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE2 BOSS”” ’ , (−115 .166 ,20 .01400000000001 ,0 .0)) ;
#61=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#62=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#63=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE2” ’ ,(#64 ,#65 ,#66 ,#67 ,#68) ,.F .) ;
#64=COMPOSITE CURVE SEGMENT($, .T. ,#71) ;
#65=COMPOSITE CURVE SEGMENT($, .T. ,#75) ;
#66=COMPOSITE CURVE SEGMENT($, .T. ,#83) ;
#67=COMPOSITE CURVE SEGMENT($, .T. ,#88) ;
#68=COMPOSITE CURVE SEGMENT($, .T. ,#96) ;
#69=DIRECTION(’546869734 f6e6573466f72596f75 ’ , (1 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0)) ;
#70=DIRECTION(’456767416 c77617973436f6d657346697273743b29 ’ , (1 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0)) ;
#71=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#72 ,#73 ,#74));
#72=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#73=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−2.7720000000000056 ,−25.256000000000014 ,0 .0)) ;
#74=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−4.754000000000005 ,−67.60600000000001 ,−7.0)) ;
#75=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE2” ’ ,#76 ,(#77) ,(#78) ,$, $) ;
#76=CIRCLE(’”CIRCLE” ’ ,#79 ,5 .0) ;
#77=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−4.754000000000005 ,−67.60600000000001 ,0 .0)) ;
#78=CARTESIAN POINT(’”TRIM POINT 2” ’ , (0 .2459999999999951 , −72 .60600000000001 ,0 .0)) ;
#79=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#80 ,#81 ,#82);
#80=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (0 .2459999999999951 , −67 .60600000000001 ,0 .0)) ;
#81=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#82=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#83=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#84 ,#85 ,#86 ,#87));
#84=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 .2459999999999951 , −72 .60600000000001 ,0 .0)) ;
#85=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (22 .676000000000002 , −72 .60600000000001 ,0 .0)) ;
#86=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (22.676000000000002 ,−74.50600000000001 ,−12.0)) ;
#87=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−0.5970000000000084 ,−74.55200000000002 ,−7.0)) ;
#88=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE2” ’ ,#89 ,(#90) ,(#91) ,$, $) ;
#89=CIRCLE(’”CIRCLE” ’ ,#92 ,5 .0) ;
#90=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−0.5970000000000084 ,−74.55200000000002 ,0 .0)) ;
#91=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5.373999999999995 ,−79.54700000000001 ,0 .0)) ;
#92=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#93 ,#94 ,#95);
#93=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−0.3739999999999952 ,−79.54600000000002 ,0 .0)) ;
#94=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#95=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#96=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE2” ’ ,(#97 ,#98 ,#99 ,#100 ,#101 ,#102 ,#103));
#97=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5.373999999999995 ,−79.54700000000001 ,0 .0)) ;
#98=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5.373999999999995 ,−84.608 ,0 .0)) ;
#99=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−7.813999999999993 ,−103.93 ,−12.0)) ;
#100=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−14.774000000000001 ,−103.93 ,−7.0)) ;
#101=CARTESIAN POINT(’”POLYLINE POINT 4” ’ ,(−14.774000000000001 ,−49.902000000000015 ,−12.0)) ;
#102=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (−6.025999999999996 ,0 .0 ,−12.0)) ;
#103=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (0 . 0 , 0 . 0 , −7 . 0)) ;
#120=PLANAR FACE(’”PLANAR FACE3” ’ ,#3 ,(#121) ,#122 ,#123 ,$, $, $, (#124)) ;
#121=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE3” ’ , $, $,#46 ,#125 ,#126 ,$, $, $, $, $, $, $, $) ;
#122=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 PLACEMENT” ’ ,#127 ,#128 ,#129);
#123=ELEMENTARY SURFACE(’”PLANAR FACE3 DEPTH PLANE” ’ ,#130);
#124=BOSS(’”PLANAR FACE3 BOSS” ’ ,#3 ,() ,#134 ,#123 ,#135 , $) ;
#125=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $,127 .31666666666666 , $, $, $, $, $) ;
#126=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#127=CARTESIAN POINT(’”PLANAR FACE3” ’ , (1 . 694 , 194 . 94 , −14 . 0)) ;
#128=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#129=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#130=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 DEPTH” ’ ,#131 ,#132 ,#133);
#131=CARTESIAN POINT(’”PLANAR FACE3 DEPTH” ’ ,(−11.634 ,−21.989000000000004 ,−23.5)) ;

178

www.EngineeringBooksPdf.com

#132=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#133=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#134=AXIS2 PLACEMENT 3D(’”PLANAR FACE3 PLACEMENT” ’ ,#136 ,#137 ,#138);
#135=GENERAL CLOSED PROFILE($,#139) ;
#136=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE3 BOSS”” ’ , (99 .206 , −27 .439999999999998 ,0 .0)) ;
#137=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#138=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#139=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE3” ’ ,(#140 ,#141 ,#142 ,#143 ,#144 ,#145 ,#146 ,#147 ,#148) ,.F .) ;
#140=COMPOSITE CURVE SEGMENT($, .T. ,#149) ;
#141=COMPOSITE CURVE SEGMENT($, .T. ,#163) ;
#142=COMPOSITE CURVE SEGMENT($, .T. ,#171) ;
#143=COMPOSITE CURVE SEGMENT($, .T. ,#174) ;
#144=COMPOSITE CURVE SEGMENT($, .T. ,#182) ;
#145=COMPOSITE CURVE SEGMENT($, .T. ,#192) ;
#146=COMPOSITE CURVE SEGMENT($, .T. ,#200) ;
#147=COMPOSITE CURVE SEGMENT($, .T. ,#203) ;
#148=COMPOSITE CURVE SEGMENT($, .T. ,#211) ;
#149=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#150 ,#151 ,#152 ,#153 ,#154 ,#155 ,#156 ,#157 ,#158 ,

#159 ,#160 ,#161 ,#162));
#150=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#151=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .100999999999999 , −6 .0020000000000095 ,0 .0)) ;
#152=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (9 .549999999999997 ,−36.75 ,−15.0)) ;
#153=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (18 .099999999999994 ,−86.85 ,−20.0)) ;
#154=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (18 .099999999999994 ,−152.5 ,−15.0)) ;
#155=CARTESIAN POINT(’”POLYLINE POINT 5” ’ ,(−85.9 ,−152.5 ,−15.0)) ;
#156=CARTESIAN POINT(’”POLYLINE POINT 6” ’ ,(−85.9 ,−85.346 ,−20.0)) ;
#157=CARTESIAN POINT(’”POLYLINE POINT 7” ’ ,(−75.9 ,−28.30000000000001 ,−15.0)) ;
#158=CARTESIAN POINT(’”POLYLINE POINT 8” ’ , (−69 .4 ,0 .0 , −20 .0)) ;
#159=CARTESIAN POINT(’”POLYLINE POINT 9” ’ , (−66 .4 ,0 .0 , −15 .0)) ;
#160=CARTESIAN POINT(’”POLYLINE POINT 10” ’ ,(−71.13300000000001 ,−35.50200000000001 ,−15.0)) ;
#161=CARTESIAN POINT(’”POLYLINE POINT 11” ’ ,(−73.898 ,−60.7 ,−15.0)) ;
#162=CARTESIAN POINT(’”POLYLINE POINT 12” ’ ,(−75.88 ,−103.05000000000001 ,−15.0)) ;
#163=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#164 ,(#165) ,(#166) , $, $) ;
#164=CIRCLE(’”CIRCLE” ’ ,#167 ,5 .0) ;
#165=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−75.88 ,−103.05000000000001 ,0 .0)) ;
#166=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−70.88 ,−108.05000000000001 ,0 .0)) ;
#167=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#168 ,#169 ,#170);
#168=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−70.88 ,−103.05000000000001 ,0 .0)) ;
#169=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#170=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#171=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#172 ,#173)) ;
#172=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−70.88 ,−108.05000000000001 ,0 .0)) ;
#173=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−41.900000000000006 ,−108.05000000000001 ,0 .0)) ;
#174=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#175 ,(#176) ,(#177) , $, $) ;
#175=CIRCLE(’”CIRCLE” ’ ,#178 ,5 .0) ;
#176=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−41.900000000000006 ,−108.05000000000001 ,0 .0)) ;
#177=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−36.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#178=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#179 ,#180 ,#181);
#179=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−41.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#180=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#181=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#182=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#183 ,#184 ,#185 ,#186 ,#187 ,#188 ,#189 ,#190 ,#191));
#183=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−36.900000000000006 ,−103.05000000000001 ,0 .0)) ;
#184=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−36.90200000000001 ,−65.567 ,0 .0)) ;
#185=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−36.91100000000001 ,−65.435 ,2 .0)) ;
#186=CARTESIAN POINT(’”POLYLINE POINT 3” ’ ,(−36.90800000000001 ,−65.416 ,−20.0)) ;
#187=CARTESIAN POINT(’”POLYLINE POINT 4” ’ ,(−36.932 ,−65.132 ,−15.0)) ;
#188=CARTESIAN POINT(’”POLYLINE POINT 5” ’ ,(−36.94200000000001 ,−60.68899999999999 ,−15.0)) ;
#189=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (−33.971000000000004 ,−60.68899999999999 ,2 .0)) ;
#190=CARTESIAN POINT(’”POLYLINE POINT 7” ’ ,(−34.94600000000001 ,−73.05 ,−15.0)) ;
#191=CARTESIAN POINT(’”POLYLINE POINT 8” ’ ,(−34.95 ,−103.05000000000001 ,−15.0)) ;
#192=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#193 ,(#194) ,(#195) , $, $) ;
#193=CIRCLE(’”CIRCLE” ’ ,#196 ,5 .0) ;
#194=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−34.95 ,−103.05000000000001 ,0 .0)) ;
#195=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−29.950000000000003 ,−108.05000000000001 ,0 .0)) ;
#196=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#197 ,#198 ,#199);
#197=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−29.950000000000003 ,−103.05000000000001 ,0 .0)) ;
#198=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#199=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#200=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#201 ,#202)) ;
#201=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−29.950000000000003 ,−108.05000000000001 ,0 .0)) ;
#202=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (6 .941999999999993 , −108 .04599999999999 ,0 .0)) ;
#203=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE3” ’ ,#204 ,(#205) ,(#206) , $, $) ;
#204=CIRCLE(’”CIRCLE” ’ ,#207 ,5 .0) ;
#205=CARTESIAN POINT(’”TRIM POINT 1” ’ , (6 .941999999999993 , −108 .04599999999999 ,0 .0)) ;
#206=CARTESIAN POINT(’”TRIM POINT 2” ’ , (11 .713999999999999 , −102 .63 ,0 .0)) ;
#207=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#208 ,#209 ,#210);
#208=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (6 .72999999999999 , −103 .05000000000001 ,0 .0)) ;
#209=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#210=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#211=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE3” ’ ,(#212 ,#213 ,#214 ,#215));
#212=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (11 .713999999999999 , −102 .63 ,0 .0)) ;
#213=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (6 .547999999999988 , −41 .982 ,0 .0)) ;
#214=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−1.301000000000002 ,0 .0 ,−20.0)) ;
#215=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (0 . 0 , 0 . 0 , −15 . 0)) ;
#216=CLOSED POCKET(’”POCKET1” ’ ,#3 ,(#217) ,#218 ,#219 ,() , $,#220 ,#221 ,$,#222) ;
#217=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET1” ’ , $, $,#46 ,#223 ,#224 ,$, $, $, $, $, $, $, $) ;
#218=AXIS2 PLACEMENT 3D(’”POCKET1 PLACEMENT” ’ ,#225 ,#226 ,#227);

179

www.EngineeringBooksPdf.com

#219=ELEMENTARY SURFACE(’”POCKET1 DEPTH PLANE” ’ ,#228);
#220=PLANAR POCKET BOTTOM CONDITION() ;
#221=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#222=GENERAL CLOSED PROFILE($,#232) ;
#223=MILLING TECHNOLOGY(0.008483333333333334 , .TCP. , $, 1 0 6 . 1 , $, $, $, $, $) ;
#224=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#225=CARTESIAN POINT(’”POCKET1” ’ , (29 . 924 , 47 . 056 , −14 . 0)) ;
#226=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#227=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#228=AXIS2 PLACEMENT 3D(’”POCKET1 DEPTH” ’ ,#229 ,#230 ,#231);
#229=CARTESIAN POINT(’”POCKET1 DEPTH” ’ ,(−0.02400000000000091 ,0 .4620000000000033 ,−17.0)) ;
#230=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#231=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#232=COMPOSITE CURVE(’”BOUNDARY: POCKET1” ’ ,(#233 ,#234 ,#235 ,#236 ,#237 ,#238 ,#239 ,#240 ,#241) ,.F .) ;
#233=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#242) ;
#234=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#250) ;
#235=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#253) ;
#236=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#256) ;
#237=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#264) ;
#238=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#267) ;
#239=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#275) ;
#240=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#278) ;
#241=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#286) ;
#242=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#243 ,(#244) ,(#245) , .T . , .CARTESIAN .) ;
#243=CIRCLE(’”CIRCLE” ’ ,#246 ,5 .0) ;
#244=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−0 .7469999999999999 ,10 .448 ,0 .0)) ;
#245=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5 .524000000000001 ,5 .453000000000003 ,0 .0)) ;
#246=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#247 ,#248 ,#249);
#247=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−0 .5240000000000009 ,5 .454000000000001 ,0 .0)) ;
#248=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#249=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#250=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#251 ,#252));
#251=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5 .524000000000001 ,5 .453000000000003 ,0 .0)) ;
#252=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5 .524000000000001 ,0 .392000000000003 ,0 .0)) ;
#253=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#254 ,#255));
#254=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5 .524000000000001 ,0 .392000000000003 ,0 .0)) ;
#255=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−7.983999999999998 ,−19.119999999999997 ,0 .0)) ;
#256=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#257 ,(#258) ,(#259) , .T . , .CARTESIAN .) ;
#257=CIRCLE(’”CIRCLE” ’ ,#260 ,5 .0) ;
#258=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−7.983999999999998 ,−19.119999999999997 ,0 .0)) ;
#259=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−3.003 ,−24.555999999999997 ,0 .0)) ;
#260=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#261 ,#262 ,#263);
#261=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−3.003999999999998 ,−19.555999999999997 ,0 .0)) ;
#262=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#263=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#264=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#265 ,#266));
#265=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−3.003 ,−24.555999999999997 ,0 .0)) ;
#266=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (76 .876 , −24 .555999999999997 ,0 .0)) ;
#267=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#268 ,(#269) ,(#270) , .T . , .CARTESIAN .) ;
#268=CIRCLE(’”CIRCLE” ’ ,#271 ,5 .0) ;
#269=CARTESIAN POINT(’”TRIM POINT 1” ’ , (76 .876 , −24 .555999999999997 ,0 .0)) ;
#270=CARTESIAN POINT(’”TRIM POINT 2” ’ , (81 .876 , −19 .555999999999997 ,0 .0)) ;
#271=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#272 ,#273 ,#274);
#272=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (76 .876 , −19 .555999999999997 ,0 .0)) ;
#273=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#274=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#275=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#276 ,#277));
#276=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (81 .876 , −19 .555999999999997 ,0 .0)) ;
#277=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (81 . 87100000000001 , 5 . 631 , 0 . 0)) ;
#278=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET1” ’ ,#279 ,(#280) ,(#281) , .T . , .CARTESIAN .) ;
#279=CIRCLE(’”CIRCLE” ’ ,#282 ,5 .0) ;
#280=CARTESIAN POINT(’”TRIM POINT 1” ’ , (81 . 87100000000001 , 5 . 631 , 0 . 0)) ;
#281=CARTESIAN POINT(’”TRIM POINT 2” ’ , (77 . 096 , 10 . 410000000000004 , 0 . 0)) ;
#282=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#283 ,#284 ,#285);
#283=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (76 . 876 , 5 . 4140000000000015 , 0 . 0)) ;
#284=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#285=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#286=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET1” ’ ,(#287 ,#288));
#287=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (77 . 096 , 10 . 410000000000004 , 0 . 0)) ;
#288=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−0 .7469999999999999 ,10 .448 ,0 .0)) ;
#289=CLOSED POCKET(’”POCKET2” ’ ,#3 ,(#290) ,#291 ,#292 ,() , $,#293 ,#294 ,$,#295) ;
#290=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET2” ’ , $, $,#46 ,#296 ,#297 ,$, $, $, $, $, $, $, $) ;
#291=AXIS2 PLACEMENT 3D(’”POCKET2 PLACEMENT” ’ ,#298 ,#299 ,#300);
#292=ELEMENTARY SURFACE(’”POCKET2 DEPTH PLANE” ’ ,#301);
#293=PLANAR POCKET BOTTOM CONDITION() ;
#294=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#295=GENERAL CLOSED PROFILE($,#305) ;
#296=MILLING TECHNOLOGY(0.008483333333333334 , .TCP. , $,106 .63333333333334 , $, $, $, $, $) ;
#297=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#298=CARTESIAN POINT(’”POCKET2” ’ , (101 . 797 , 47 . 475 , −19 . 0)) ;
#299=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#300=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#301=AXIS2 PLACEMENT 3D(’”POCKET2 DEPTH” ’ ,#302 ,#303 ,#304);
#302=CARTESIAN POINT(’”POCKET2 DEPTH” ’ , (4 .503 ,−14.975000000000001 ,−24.5)) ;
#303=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#304=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#305=COMPOSITE CURVE(’”BOUNDARY: POCKET2” ’ ,(#306 ,#307 ,#308 ,#309 ,#310 ,#311 ,#312 ,#313) ,.F .) ;
#306=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#314) ;

180

www.EngineeringBooksPdf.com

#307=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#322) ;
#308=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#325) ;
#309=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#333) ;
#310=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#336) ;
#311=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#344) ;
#312=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#347) ;
#313=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#355) ;
#314=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#315 ,(#316) ,(#317) , .T . , .CARTESIAN .) ;
#315=CIRCLE(’”CIRCLE” ’ ,#318 ,5 .0) ;
#316=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−31 .063000000000002 ,10 .015999999999998 ,0 .0)) ;
#317=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−35 . 842 , 5 . 241 , 0 . 0)) ;
#318=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#319 ,#320 ,#321);
#319=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−30 .846999999999994 ,5 .024999999999999 ,0 .0)) ;
#320=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#321=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#322=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#323 ,#324));
#323=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−35 . 842 , 5 . 241 , 0 . 0)) ;
#324=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−35.846999999999994 ,−19.975 ,0 .0)) ;
#325=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#326 ,(#327) ,(#328) , .T . , .CARTESIAN .) ;
#326=CIRCLE(’”CIRCLE” ’ ,#329 ,5 .0) ;
#327=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−35.846999999999994 ,−19.975 ,0 .0)) ;
#328=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−30.846999999999994 ,−24.975 ,0 .0)) ;
#329=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#330 ,#331 ,#332);
#330=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−30.846999999999994 ,−19.975 ,0 .0)) ;
#331=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#332=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#333=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#334 ,#335));
#334=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−30.846999999999994 ,−24.975 ,0 .0)) ;
#335=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (5 . 003 , −24 . 975 , 0 . 0)) ;
#336=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#337 ,(#338) ,(#339) , .T . , .CARTESIAN .) ;
#337=CIRCLE(’”CIRCLE” ’ ,#340 ,5 .0) ;
#338=CARTESIAN POINT(’”TRIM POINT 1” ’ , (5 . 003 , −24 . 975 , 0 . 0)) ;
#339=CARTESIAN POINT(’”TRIM POINT 2” ’ , (10 . 003 , −19 . 975 , 0 . 0)) ;
#340=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#341 ,#342 ,#343);
#341=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (5 . 003 , −19 . 975 , 0 . 0)) ;
#342=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#343=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#344=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#345 ,#346)) ;
#345=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (10 . 003 , −19 . 975 , 0 . 0)) ;
#346=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (9 .998000000000005 ,5 .211999999999996 ,0 .0)) ;
#347=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET2” ’ ,#348 ,(#349) ,(#350) , .T . , .CARTESIAN .) ;
#348=CIRCLE(’”CIRCLE” ’ ,#351 ,5 .0) ;
#349=CARTESIAN POINT(’”TRIM POINT 1” ’ , (9 .998000000000005 ,5 .211999999999996 ,0 .0)) ;
#350=CARTESIAN POINT(’”TRIM POINT 2” ’ , (5 . 222999999999999 , 9 . 991 , 0 . 0)) ;
#351=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#352 ,#353 ,#354);
#352=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (5 . 003 , 4 . 994999999999997 , 0 . 0)) ;
#353=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#354=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#355=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET2” ’ ,(#356 ,#357));
#356=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (5 . 222999999999999 , 9 . 991 , 0 . 0)) ;
#357=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−31 .063000000000002 ,10 .015999999999998 ,0 .0)) ;
#358=CLOSED POCKET(’”POCKET3” ’ ,#3 ,(#359) ,#360 ,#361 ,() ,0.785 ,#362 ,#363 ,$,#364) ;
#359=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET3” ’ , $, $,#46 ,#365 ,#366 ,$, $, $, $, $, 0 . 5 , $, $) ;
#360=AXIS2 PLACEMENT 3D(’”POCKET3 PLACEMENT” ’ ,#367 ,#368 ,#369);
#361=ELEMENTARY SURFACE(’”POCKET3 DEPTH PLANE” ’ ,#370);
#362=PLANAR POCKET BOTTOM CONDITION() ;
#363=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#364=GENERAL CLOSED PROFILE($,#374) ;
#365=MILLING TECHNOLOGY(0.006666666666666667 , .TCP. , $, 1 0 6 . 1 , $, $, $, $, $) ;
#366=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#367=CARTESIAN POINT(’”POCKET3” ’ , (32 . 592 , 32 . 5 , −19 . 0)) ;
#368=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#369=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#370=AXIS2 PLACEMENT 3D(’”POCKET3 DEPTH” ’ ,#371 ,#372 ,#373);
#371=CARTESIAN POINT(’”POCKET3 DEPTH” ’ , (−2.692 ,19 .509999999999998 ,−26.5)) ;
#372=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#373=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#374=COMPOSITE CURVE(’”BOUNDARY: POCKET3” ’ ,(#375 ,#376 ,#377 ,#378 ,#379 ,#380 ,#381 ,#382 ,#383) ,.F .) ;
#375=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#384) ;
#376=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#392) ;
#377=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#395) ;
#378=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#398) ;
#379=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#406) ;
#380=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#409) ;
#381=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#417) ;
#382=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#420) ;
#383=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#428) ;
#384=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#385 ,(#386) ,(#387) , .T . , .CARTESIAN .) ;
#385=CIRCLE(’”CIRCLE” ’ ,#388 ,5 .0) ;
#386=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−3 .414999999999999 ,25 .003999999999998 ,0 .0)) ;
#387=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−8 . 192 , 20 . 009 , 0 . 0)) ;
#388=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#389 ,#390 ,#391);
#389=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−3 .192 ,20 .009999999999998 ,0 .0)) ;
#390=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#391=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#392=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#393 ,#394));
#393=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−8 . 192 , 20 . 009 , 0 . 0)) ;
#394=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−8 . 192 , 14 . 948 , 0 . 0)) ;

181

www.EngineeringBooksPdf.com

#395=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#396 ,#397));
#396=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−8 . 192 , 14 . 948 , 0 . 0)) ;
#397=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−10.651999999999997 ,−4.564 ,0 .0)) ;
#398=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#399 ,(#400) ,(#401) , .T . , .CARTESIAN .) ;
#399=CIRCLE(’”CIRCLE” ’ ,#402 ,5 .0) ;
#400=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−10.651999999999997 ,−4.564 ,0 .0)) ;
#401=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−5.670999999999999 ,−10.0 ,0 .0)) ;
#402=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#403 ,#404 ,#405);
#403=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−5.671999999999997 ,−5.0 ,0 .0)) ;
#404=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#405=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#406=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#407 ,#408));
#407=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−5.670999999999999 ,−10.0 ,0 .0)) ;
#408=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (26 . 408 , −10 . 0 , 0 . 0)) ;
#409=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#410 ,(#411) ,(#412) , .T . , .CARTESIAN .) ;
#410=CIRCLE(’”CIRCLE” ’ ,#413 ,5 .0) ;
#411=CARTESIAN POINT(’”TRIM POINT 1” ’ , (26 . 408 , −10 . 0 , 0 . 0)) ;
#412=CARTESIAN POINT(’”TRIM POINT 2” ’ , (31 . 408 , −5 . 0 , 0 . 0)) ;
#413=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#414 ,#415 ,#416);
#414=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (26 . 408 , −5 . 0 , 0 . 0)) ;
#415=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#416=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#417=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#418 ,#419));
#418=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (31 . 408 , −5 . 0 , 0 . 0)) ;
#419=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (31 . 404000000000003 , 20 . 229 , 0 . 0)) ;
#420=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET3” ’ ,#421 ,(#422) ,(#423) , .T . , .CARTESIAN .) ;
#421=CIRCLE(’”CIRCLE” ’ ,#424 ,5 .0) ;
#422=CARTESIAN POINT(’”TRIM POINT 1” ’ , (31 . 404000000000003 , 20 . 229 , 0 . 0)) ;
#423=CARTESIAN POINT(’”TRIM POINT 2” ’ , (26 . 429000000000002 , 25 . 022 , 0 . 0)) ;
#424=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#425 ,#426 ,#427);
#425=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (26 . 408 , 20 . 020000000000003 , 0 . 0)) ;
#426=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#427=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#428=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET3” ’ ,(#429 ,#430));
#429=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (26 . 429000000000002 , 25 . 022 , 0 . 0)) ;
#430=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−3 .414999999999999 ,25 .003999999999998 ,0 .0)) ;
#431=CLOSED POCKET(’”POCKET4” ’ ,#3 ,(#432) ,#433 ,#434 ,() , $,#435 ,#436 ,$,#437) ;
#432=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET4” ’ , $, $,#46 ,#438 ,#439 ,$, $, $, $, $, $, $, $) ;
#433=AXIS2 PLACEMENT 3D(’”POCKET4 PLACEMENT” ’ ,#440 ,#441 ,#442);
#434=ELEMENTARY SURFACE(’”POCKET4 DEPTH PLANE” ’ ,#443);
#435=PLANAR POCKET BOTTOM CONDITION() ;
#436=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#437=GENERAL CLOSED PROFILE($,#447) ;
#438=MILLING TECHNOLOGY(0 . 0 1 3 8 , .TCP. , $,137 .93333333333334 , $, $, $, $, $) ;
#439=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#440=CARTESIAN POINT(’”POCKET4” ’ , (55 . 508 , 92 . 56 , −25 . 0)) ;
#441=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#442=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#443=AXIS2 PLACEMENT 3D(’”POCKET4 DEPTH” ’ ,#444 ,#445 ,#446);
#444=CARTESIAN POINT(’”POCKET4 DEPTH” ’ ,(−1.5080000000000027 ,8 .739999999999995 ,−25.0)) ;
#445=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#446=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#447=COMPOSITE CURVE(’”BOUNDARY: POCKET4” ’ ,(#448 ,#449 ,#450 ,#451 ,#452 ,#453 ,#454 ,#455) ,.F .) ;
#448=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#456) ;
#449=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#459) ;
#450=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#467) ;
#451=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#470) ;
#452=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#478) ;
#453=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#481) ;
#454=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#489) ;
#455=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#492) ;
#456=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#457 ,#458));
#457=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (3 .4919999999999973 ,14 .239999999999995 ,0 .0)) ;
#458=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−23 .939000000000004 ,14 .236000000000004 ,0 .0)) ;
#459=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#460 ,(#461) ,(#462) , .T . , .CARTESIAN .) ;
#460=CIRCLE(’”CIRCLE” ’ ,#463 ,5 .0) ;
#461=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−23 .939000000000004 ,14 .236000000000004 ,0 .0)) ;
#462=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−28 .732000000000003 ,9 .474000000000004 ,0 .0)) ;
#463=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#464 ,#465 ,#466);
#464=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−23 .738000000000003 ,9 .239999999999995 ,0 .0)) ;
#465=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#466=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#467=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#468 ,#469));
#468=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−28 .732000000000003 ,9 .474000000000004 ,0 .0)) ;
#469=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−30.488000000000003 ,−28.11 ,0 .0)) ;
#470=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#471 ,(#472) ,(#473) , .T . , .CARTESIAN .) ;
#471=CIRCLE(’”CIRCLE” ’ ,#474 ,5 .0) ;
#472=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−30.488000000000003 ,−28.11 ,0 .0)) ;
#473=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−25.488000000000003 ,−33.11 ,0 .0)) ;
#474=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#475 ,#476 ,#477);
#475=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−25.488000000000003 ,−28.11 ,0 .0)) ;
#476=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#477=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#478=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#479 ,#480));
#479=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−25.488000000000003 ,−33.11 ,0 .0)) ;
#480=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .4919999999999973 , −33 .11 ,0 .0)) ;
#481=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#482 ,(#483) ,(#484) , .T . , .CARTESIAN .) ;
#482=CIRCLE(’”CIRCLE” ’ ,#485 ,5 .0) ;

182

www.EngineeringBooksPdf.com

#483=CARTESIAN POINT(’”TRIM POINT 1” ’ , (3 .4919999999999973 , −33 .11 ,0 .0)) ;
#484=CARTESIAN POINT(’”TRIM POINT 2” ’ , (8 .491999999999997 , −28 .11 ,0 .0)) ;
#485=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#486 ,#487 ,#488);
#486=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (3 .4919999999999973 , −28 .11 ,0 .0)) ;
#487=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#488=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#489=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET4” ’ ,(#490 ,#491));
#490=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (8 .491999999999997 , −28 .11 ,0 .0)) ;
#491=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (8 .491999999999997 ,9 .239999999999995 ,0 .0)) ;
#492=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET4” ’ ,#493 ,(#494) ,(#495) , .T . , .CARTESIAN .) ;
#493=CIRCLE(’”CIRCLE” ’ ,#496 ,5 .0) ;
#494=CARTESIAN POINT(’”TRIM POINT 1” ’ , (8 .491999999999997 ,9 .239999999999995 ,0 .0)) ;
#495=CARTESIAN POINT(’”TRIM POINT 2” ’ , (3 .4919999999999973 ,14 .239999999999995 ,0 .0)) ;
#496=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#497 ,#498 ,#499);
#497=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (3 .4919999999999973 ,9 .239999999999995 ,0 .0)) ;
#498=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#499=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#500=CLOSED POCKET(’”POCKET5” ’ ,#3 ,(#501) ,#502 ,#503 ,(#504) ,$,#505 ,#506 ,$,#507) ;
#501=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET5” ’ , $, $,#46 ,#508 ,#509 ,$, $, $, $, $, $, $, $) ;
#502=AXIS2 PLACEMENT 3D(’”POCKET5 PLACEMENT” ’ ,#510 ,#511 ,#512);
#503=ELEMENTARY SURFACE(’”POCKET5 DEPTH PLANE” ’ ,#513);
#504=BOSS(’”POCKET5 BOSS” ’ ,#3 ,() ,#517 ,#503 ,#518 , $) ;
#505=PLANAR POCKET BOTTOM CONDITION() ;
#506=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#507=GENERAL CLOSED PROFILE($,#527) ;
#508=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $,107 .16666666666667 , $, $, $, $, $) ;
#509=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#510=CARTESIAN POINT(’”POCKET5” ’ , (104 . 64 , 87 . 373 , −25 . 5)) ;
#511=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#512=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#513=AXIS2 PLACEMENT 3D(’”POCKET5 DEPTH” ’ ,#514 ,#515 ,#516);
#514=CARTESIAN POINT(’”POCKET5 DEPTH” ’ ,(0 .8529999999999944 ,−4.927000000000007 ,−25.5)) ;
#515=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#516=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#517=AXIS2 PLACEMENT 3D(’”POCKET5 PLACEMENT” ’ ,#519 ,#520 ,#521);
#518=CIRCULAR CLOSED PROFILE(#522 ,#523);
#519=CARTESIAN POINT(’”LOCATIONPOCKET5” ’ ,(−18.040000000000006 ,−3.3230000000000075 ,−12.0)) ;
#520=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#521=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#522=AXIS2 PLACEMENT 3D(’”CIRCULAR PROFILE LOCATION” ’ ,#524 ,#525 ,#526);
#523=TOLERANCED LENGTH MEASURE(8 . 5 , $) ;
#524=CARTESIAN POINT(’”LOCATION POINT” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#525=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#526=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#527=COMPOSITE CURVE(’”BOUNDARY: POCKET5” ’ ,(#528 ,#529 ,#530 ,#531 ,#532 ,#533 ,#534 ,#535 ,#536 ,#537 ,#538) ,.F .) ;
#528=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#539) ;
#529=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#547) ;
#530=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#550) ;
#531=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#558) ;
#532=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#561) ;
#533=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#564) ;
#534=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#572) ;
#535=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#575) ;
#536=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#583) ;
#537=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#586) ;
#538=COMPOSITE CURVE SEGMENT(.CONTINUOUS. , .T. ,#594) ;
#539=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#540 ,(#541) ,(#542) , .T . , .CARTESIAN .) ;
#540=CIRCLE(’”CIRCLE” ’ ,#543 ,5 .0) ;
#541=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−32 .947 ,18 .429000000000002 ,0 .0)) ;
#542=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−37 .995000000000005 ,13 .939999999999998 ,0 .0)) ;
#543=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#544 ,#545 ,#546);
#544=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33 .019999999999996 ,13 .426999999999992 ,0 .0)) ;
#545=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#546=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#547=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#548 ,#549));
#548=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−37 .995000000000005 ,13 .939999999999998 ,0 .0)) ;
#549=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38 .022000000000006 ,13 .527000000000001 ,0 .0)) ;
#550=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#551 ,(#552) ,(#553) , .T . , .CARTESIAN .) ;
#551=CIRCLE(’”CIRCLE” ’ ,#554 ,5 .0) ;
#552=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38 .022000000000006 ,13 .527000000000001 ,0 .0)) ;
#553=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−38 .092 ,13 .096999999999994 ,0 .0)) ;
#554=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#555 ,#556 ,#557);
#555=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33 .129999999999995 ,12 .50699999999999 ,0 .0)) ;
#556=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#557=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#558=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#559 ,#560));
#559=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−38 .092 ,13 .096999999999994 ,0 .0)) ;
#560=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38 .566 ,7 .0719999999999885 ,0 .0)) ;
#561=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#562 ,#563));
#562=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−38 .566 ,7 .0719999999999885 ,0 .0)) ;
#563=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#564=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#565 ,(#566) ,(#567) , .T . , .CARTESIAN .) ;
#565=CIRCLE(’”CIRCLE” ’ ,#568 ,5 .0) ;
#566=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#567=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−33.57000000000001 ,−27.803000000000004 ,0 .0)) ;
#568=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#569 ,#570 ,#571);
#569=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−33.57000000000001 ,−22.80300000000001 ,0 .0)) ;
#570=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;

183

www.EngineeringBooksPdf.com

#571=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#572=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#573 ,#574));
#573=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−33.57000000000001 ,−27.803000000000004 ,0 .0)) ;
#574=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (3 .0720000000000027 , −27 .799000000000007 ,0 .0)) ;
#575=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#576 ,(#577) ,(#578) , .T . , .CARTESIAN .) ;
#576=CIRCLE(’”CIRCLE” ’ ,#579 ,5 .0) ;
#577=CARTESIAN POINT(’”TRIM POINT 1” ’ , (3 .0720000000000027 , −27 .799000000000007 ,0 .0)) ;
#578=CARTESIAN POINT(’”TRIM POINT 2” ’ , (7 .843999999999994 , −22 .38300000000001 ,0 .0)) ;
#579=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#580 ,#581 ,#582);
#580=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (2 .8599999999999994 , −22 .80300000000001 ,0 .0)) ;
#581=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#582=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#583=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#584 ,#585));
#584=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (7 .843999999999994 , −22 .38300000000001 ,0 .0)) ;
#585=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (4 .810999999999993 ,13 .549999999999997 ,0 .0)) ;
#586=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF POCKET5” ’ ,#587 ,(#588) ,(#589) , .T . , .CARTESIAN .) ;
#587=CIRCLE(’”CIRCLE” ’ ,#590 ,5 .0) ;
#588=CARTESIAN POINT(’”TRIM POINT 1” ’ , (4 .810999999999993 ,13 .549999999999997 ,0 .0)) ;
#589=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−0 .07800000000000296 ,17 .94099999999999 ,0 .0)) ;
#590=AXIS2 PLACEMENT 3D(’”CIRCLE CENTER” ’ ,#591 ,#592 ,#593);
#591=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−0 .15000000000000568 ,12 .946999999999989 ,0 .0)) ;
#592=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#593=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#594=POLYLINE(’”POLYLINE FOR CONTOUR: POCKET5” ’ ,(#595 ,#596));
#595=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−0 .07800000000000296 ,17 .94099999999999 ,0 .0)) ;
#596=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−32 .947 ,18 .429000000000002 ,0 .0)) ;
#597=CLOSED POCKET(’”POCKET6” ’ ,#3 ,(#598) ,#599 ,#600 ,() , $,#601 ,#602 ,$,#603) ;
#598=BOTTOM AND SIDE MILLING($, $, ’ ”POCKET6” ’ , $, $,#46 ,#604 ,#605 ,$, $, $, $, $, $, $, $) ;
#599=AXIS2 PLACEMENT 3D(’”POCKET6 PLACEMENT” ’ ,#606 ,#607 ,#608);
#600=ELEMENTARY SURFACE(’”POCKET6 DEPTH PLANE” ’ ,#609);
#601=PLANAR POCKET BOTTOM CONDITION() ;
#602=TOLERANCED LENGTH MEASURE(5 . 0 , $) ;
#603=CIRCULAR CLOSED PROFILE(#613 ,#614);
#604=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 9 5 . 5 , $, $, $, $, $) ;
#605=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#606=CARTESIAN POINT(’”POCKET6” ’ , (86 . 6 , 84 . 055 , −25 . 5)) ;
#607=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#608=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#609=AXIS2 PLACEMENT 3D(’”POCKET6 DEPTH” ’ ,#610 ,#611 ,#612);
#610=CARTESIAN POINT(’”POCKET6 DEPTH” ’ , (0 . 0 , 0 . 0 , −27 . 0)) ;
#611=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#612=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#613=AXIS2 PLACEMENT 3D(’”CIRCULAR PROFILE LOCATION” ’ ,#615 ,#616 ,#617);
#614=TOLERANCED LENGTH MEASURE(14 . 0 , $) ;
#615=CARTESIAN POINT(’”LOCATION POINT” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#616=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#617=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#618=PLANAR FACE(’”PLANAR FACE4” ’ ,#3 ,(#619) ,#620 ,#621 ,$, $, $, (#622)) ;
#619=BOTTOM AND SIDE MILLING($, $, ’ ”PLANAR FACE4” ’ , $, $,#46 ,#623 ,#624 ,$, $, $, $, $, $, $, $) ;
#620=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 PLACEMENT” ’ ,#625 ,#626 ,#627);
#621=ELEMENTARY SURFACE(’”PLANAR FACE4 DEPTH PLANE” ’ ,#628);
#622=BOSS(’”PLANAR FACE4 BOSS” ’ ,#3 ,() ,#632 ,#621 ,#633 , $) ;
#623=MILLING TECHNOLOGY(0.004166666666666667 , .TCP. , $, 1 08 . 7 5 , $, $, $, $, $) ;
#624=MILLING MACHINE FUNCTIONS(.F . , $, $, $, $, () , $, $, $, ()) ;
#625=CARTESIAN POINT(’”PLANAR FACE4” ’ , (1 . 694 , 194 . 94 , −25 . 5)) ;
#626=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#627=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#628=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 DEPTH” ’ ,#629 ,#630 ,#631);
#629=CARTESIAN POINT(’”PLANAR FACE4 DEPTH” ’ ,(−11.634 ,−21.989000000000004 ,−27.0)) ;
#630=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#631=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#632=AXIS2 PLACEMENT 3D(’”PLANAR FACE4 PLACEMENT” ’ ,#634 ,#635 ,#636);
#633=GENERAL CLOSED PROFILE($,#637) ;
#634=CARTESIAN POINT(’”LOCATION: ”PLANAR FACE4 BOSS”” ’ , (91 .31099999999999 , −27 .439999999999998 ,0 .0)) ;
#635=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#636=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#637=COMPOSITE CURVE(’”BOUNDARY: PLANAR FACE4” ’ ,(#638 ,#639 ,#640 ,#641 ,#642 ,#643 ,#644 ,#645 ,#646 ,#647 ,

#648 ,#649 ,#650 ,#651 ,#652 ,#653 ,#654 ,#655 ,#656 ,#657 ,#658) ,.F .) ;
#638=COMPOSITE CURVE SEGMENT($, .T. ,#659) ;
#639=COMPOSITE CURVE SEGMENT($, .T. ,#676) ;
#640=COMPOSITE CURVE SEGMENT($, .T. ,#684) ;
#641=COMPOSITE CURVE SEGMENT($, .T. ,#687) ;
#642=COMPOSITE CURVE SEGMENT($, .T. ,#695) ;
#643=COMPOSITE CURVE SEGMENT($, .T. ,#699) ;
#644=COMPOSITE CURVE SEGMENT($, .T. ,#707) ;
#645=COMPOSITE CURVE SEGMENT($, .T. ,#710) ;
#646=COMPOSITE CURVE SEGMENT($, .T. ,#718) ;
#647=COMPOSITE CURVE SEGMENT($, .T. ,#721) ;
#648=COMPOSITE CURVE SEGMENT($, .T. ,#729) ;
#649=COMPOSITE CURVE SEGMENT($, .T. ,#732) ;
#650=COMPOSITE CURVE SEGMENT($, .T. ,#740) ;
#651=COMPOSITE CURVE SEGMENT($, .T. ,#743) ;
#652=COMPOSITE CURVE SEGMENT($, .T. ,#751) ;
#653=COMPOSITE CURVE SEGMENT($, .T. ,#754) ;
#654=COMPOSITE CURVE SEGMENT($, .T. ,#762) ;
#655=COMPOSITE CURVE SEGMENT($, .T. ,#765) ;
#656=COMPOSITE CURVE SEGMENT($, .T. ,#773) ;
#657=COMPOSITE CURVE SEGMENT($, .T. ,#776) ;

184

www.EngineeringBooksPdf.com

#658=COMPOSITE CURVE SEGMENT($, .T. ,#784) ;
#659=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#660 ,#661 ,#662 ,#663 ,#664 ,#665 ,#666 ,#667 ,#668 ,

#669 ,#670 ,#671 ,#672 ,#673 ,#674 ,#675));
#660=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#661=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (7 . 8 9500000000001 , 0 . 0 , 0 . 0)) ;
#662=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (10 .99600000000001 , −6 .0020000000000095 ,13 .5)) ;
#663=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (17 .445000000000007 ,−36.75 ,−13.5)) ;
#664=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (25 .995000000000005 , −86 .85 ,13 .5)) ;
#665=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (25 .995000000000005 ,−152.5 ,−13.5)) ;
#666=CARTESIAN POINT(’”POLYLINE POINT 6” ’ ,(−78.005 ,−152.5 ,−13.5)) ;
#667=CARTESIAN POINT(’”POLYLINE POINT 7” ’ , (−78 .005 , −85 .346 ,13 .5)) ;
#668=CARTESIAN POINT(’”POLYLINE POINT 8” ’ ,(−68.005 ,−28.30000000000001 ,−13.5)) ;
#669=CARTESIAN POINT(’”POLYLINE POINT 9” ’ , (−61 .504999999999995 ,0 .0 ,13 .5)) ;
#670=CARTESIAN POINT(’”POLYLINE POINT 10” ’ , (−58.504999999999995 ,0 .0 ,−13.5)) ;
#671=CARTESIAN POINT(’”POLYLINE POINT 11” ’ , (−54.504999999999995 ,−0.25 ,13 .5)) ;
#672=CARTESIAN POINT(’”POLYLINE POINT 12” ’ , (−52.629999999999995 ,−1.0999999999999943 ,13.5)) ;
#673=CARTESIAN POINT(’”POLYLINE POINT 13” ’ ,(−51.254999999999995 ,−2.4989999999999952 ,−13.5)) ;
#674=CARTESIAN POINT(’”POLYLINE POINT 14” ’ ,(−50.404999999999994 ,−4.349999999999994 ,−13.5)) ;
#675=CARTESIAN POINT(’”POLYLINE POINT 15” ’ ,(−41.55799999999999 ,−37.43700000000001 ,−13.5)) ;
#676=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#677 ,(#678) ,(#679) , $, $) ;
#677=CIRCLE(’”CIRCLE” ’ ,#680 ,5 .0) ;
#678=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−41.55799999999999 ,−37.43700000000001 ,0 .0)) ;
#679=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−41.340999999999994 ,−38.01599999999999 ,0 .0)) ;
#680=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#681 ,#682 ,#683);
#681=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−36 .775 , −35 .97 ,0 .0)) ;
#682=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#683=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#684=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#685 ,#686)) ;
#685=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−41.340999999999994 ,−38.01599999999999 ,0 .0)) ;
#686=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−40 .474 , −39 .943 ,0 .0)) ;
#687=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#688 ,(#689) ,(#690) , $, $) ;
#688=CIRCLE(’”CIRCLE” ’ ,#691 ,5 .0) ;
#689=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−40 .474 , −39 .943 ,0 .0)) ;
#690=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−39.751 ,−41.031000000000006 ,0 .0)) ;
#691=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#692 ,#693 ,#694);
#692=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−35.98499999999999 ,−37.74000000000001 ,0 .0)) ;
#693=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#694=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#695=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#696 ,#697 ,#698));
#696=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−39.751 ,−41.031000000000006 ,0 .0)) ;
#697=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−38.69199999999999 ,−42.163 ,0 .0)) ;
#698=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−38.19499999999999 ,−42.656000000000006 ,−13.5)) ;
#699=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#700 ,(#701) ,(#702) , $, $) ;
#700=CIRCLE(’”CIRCLE” ’ ,#703 ,5 .0) ;
#701=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−38.19499999999999 ,−42.656000000000006 ,0 .0)) ;
#702=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−37 .135 , −43 .419 ,0 .0)) ;
#703=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#704 ,#705 ,#706);
#704=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−34.76499999999999 ,−39.00999999999999 ,0 .0)) ;
#705=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#706=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#707=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#708 ,#709)) ;
#708=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−37 .135 , −43 .419 ,0 .0)) ;
#709=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−35.336999999999996 ,−44.316 ,0 .0)) ;
#710=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#711 ,(#712) ,(#713) , $, $) ;
#711=CIRCLE(’”CIRCLE” ’ ,#714 ,5 .0) ;
#712=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−35.336999999999996 ,−44.316 ,0 .0)) ;
#713=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−34.086999999999996 ,−44.693 ,0 .0)) ;
#714=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#715 ,#716 ,#717);
#715=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−33.275 ,−39.760000000000005 ,0 .0)) ;
#716=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#717=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#718=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#719 ,#720)) ;
#719=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−34.086999999999996 ,−44.693 ,0 .0)) ;
#720=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−32.095 ,−45.016999999999996 ,0 .0)) ;
#721=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#722 ,(#723) ,(#724) , $, $) ;
#722=CIRCLE(’”CIRCLE” ’ ,#725 ,5 .0) ;
#723=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−32.095 ,−45.016999999999996 ,0 .0)) ;
#724=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−31.660999999999994 ,−45.054 ,0 .0)) ;
#725=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#726 ,#727 ,#728);
#726=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−31 .455 , −40 .06 ,0 .0)) ;
#727=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#728=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#729=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#730 ,#731)) ;
#730=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−31.660999999999994 ,−45.054 ,0 .0)) ;
#731=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−24.498999999999995 ,−45.108000000000004 ,0 .0)) ;
#732=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#733 ,(#734) ,(#735) , $, $) ;
#733=CIRCLE(’”CIRCLE” ’ ,#736 ,5 .0) ;
#734=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−24.498999999999995 ,−45.108000000000004 ,0 .0)) ;
#735=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−23.823999999999998 ,−45.034000000000006 ,0 .0)) ;
#736=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#737 ,#738 ,#739);
#737=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−24 .705 , −40 .11 ,0 .0)) ;
#738=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#739=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#740=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#741 ,#742)) ;
#741=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−23.823999999999998 ,−45.034000000000006 ,0 .0)) ;
#742=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−21.71799999999999 ,−44.653999999999996 ,0 .0)) ;
#743=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#744 ,(#745) ,(#746) , $, $) ;
#744=CIRCLE(’”CIRCLE” ’ ,#747 ,5 .0) ;

185

www.EngineeringBooksPdf.com

#745=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−21.71799999999999 ,−44.653999999999996 ,0 .0)) ;
#746=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−20 .491 , −44 .208 ,0 .0)) ;
#747=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#748 ,#749 ,#750);
#748=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−22.795 ,−39.769999999999996 ,0 .0)) ;
#749=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#750=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#751=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#752 ,#753)) ;
#752=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−20 .491 , −44 .208 ,0 .0)) ;
#753=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−18.86399999999999 ,−43.358000000000004 ,0 .0)) ;
#754=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#755 ,(#756) ,(#757) , $, $) ;
#755=CIRCLE(’”CIRCLE” ’ ,#758 ,5 .0) ;
#756=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−18.86399999999999 ,−43.358000000000004 ,0 .0)) ;
#757=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−17.820999999999998 ,−42.57299999999999 ,0 .0)) ;
#758=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#759 ,#760 ,#761);
#759=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−21.32499999999999 ,−39.0 ,0 .0)) ;
#760=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#761=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#762=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#763 ,#764)) ;
#763=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−17.820999999999998 ,−42.57299999999999 ,0 .0)) ;
#764=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−16.31899999999999 ,−40.997 ,0 .0)) ;
#765=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#766 ,(#767) ,(#768) , $, $) ;
#766=CIRCLE(’”CIRCLE” ’ ,#769 ,5 .0) ;
#767=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−16.31899999999999 ,−40.997 ,0 .0)) ;
#768=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−15.509999999999991 ,−39.748000000000005 ,0 .0)) ;
#769=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#770 ,#771 ,#772);
#770=CARTESIAN POINT(’”CIRCLE CENTER” ’ ,(−20.064999999999998 ,−37.68000000000001 ,0 .0)) ;
#771=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#772=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#773=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#774 ,#775)) ;
#774=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−15.509999999999991 ,−39.748000000000005 ,0 .0)) ;
#775=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−14.748999999999995 ,−38.06299999999999 ,0 .0)) ;
#776=TRIMMEDCURVE(’”TRIMMED CURVE FOR CONTOUR OF PLANAR FACE4” ’ ,#777 ,(#778) ,(#779) , $, $) ;
#777=CIRCLE(’”CIRCLE” ’ ,#780 ,5 .0) ;
#778=CARTESIAN POINT(’”TRIM POINT 1” ’ , (−14.748999999999995 ,−38.06299999999999 ,0 .0)) ;
#779=CARTESIAN POINT(’”TRIM POINT 2” ’ , (−14.548999999999992 ,−37.46600000000001 ,0 .0)) ;
#780=AXIS2 PLACEMENT 3D(’”CIRCLE PLACEMENT” ’ ,#781 ,#782 ,#783);
#781=CARTESIAN POINT(’”CIRCLE CENTER” ’ , (−19.375 ,−36.16999999999999 ,0 .0)) ;
#782=DIRECTION(’”Z DIRECTION” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#783=DIRECTION(’”X DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#784=POLYLINE(’”POLYLINE FOR CONTOUR: PLANAR FACE4” ’ ,(#785 ,#786 ,#787 ,#788 ,#789 ,#790 ,#791));
#785=CARTESIAN POINT(’”POLYLINE POINT 1” ’ , (−14.548999999999992 ,−37.46600000000001 ,0 .0)) ;
#786=CARTESIAN POINT(’”POLYLINE POINT 2” ’ , (−5.724999999999994 ,−4.460000000000008 ,0 .0)) ;
#787=CARTESIAN POINT(’”POLYLINE POINT 2” ’ ,(−5.0 ,−2.8300000000000125 ,−13.5)) ;
#788=CARTESIAN POINT(’”POLYLINE POINT 3” ’ , (−4.036999999999992 ,−1.681999999999988 ,13.5)) ;
#789=CARTESIAN POINT(’”POLYLINE POINT 4” ’ , (−3.5 ,−1.2050000000000125 ,13 .5)) ;
#790=CARTESIAN POINT(’”POLYLINE POINT 5” ’ , (−1.9299999999999926 ,−0.30000000000001137 ,13.5)) ;
#791=CARTESIAN POINT(’”POLYLINE POINT 6” ’ , (0 . 0 , 0 . 0 , −13 . 5)) ;
#792=AXIS2 PLACEMENT 3D(’””SETUP” ORIGIN” ’ ,#794 ,#795 ,#796);
#793=WORKPIECE SETUP(#3 ,#797 ,$, $, ()) ;
#794=CARTESIAN POINT(’””SETUP” : LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#795=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#796=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#797=AXIS2 PLACEMENT 3D(’””WORKPIECE135. 0X185 . 0X40 .0” SETUP” ’ ,#798 ,#799 ,#800);
#798=CARTESIAN POINT(’”SECURITY PLANE: LOCATION” ’ , (0 . 0 , 0 . 0 , 0 . 0)) ;
#799=DIRECTION(’”AXIS ” ’ , (0 . 0 , 0 . 0 , 1 . 0)) ;
#800=DIRECTION(’”REF DIRECTION” ’ , (1 . 0 , 0 . 0 , 0 . 0)) ;
#801=DIRECTION(’494 c4f5645594f5552414348454c ’ , (1 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0)) ;
ENDSEC;
END−ISO−10303−21

186

www.EngineeringBooksPdf.com

